
Volume Ray Casting Techniques and Applications using
General Purpose Computations on

Graphics Processing Units

by

Michael Romero

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of
Master of Science in Computer Engineering

Supervised by

Professor Dr. Muhammad Shaaban
Department of Computer Engineering
Kate Gleason College of Engineering

Rochester Institute of Technology
Rochester, New York

June 2009

Approved by:

Dr. Muhammad Shaaban
Thesis Advisor, Department of Computer Engineering

Dr. Roy Melton
Committee Member, Department of Computer Engineering

Dr. Joe Geigel
Committee Member, Department of Computer Science

Dr. Reynold Bailey
Committee Member, Department of Computer Science

Thesis Release Permission Form

Rochester Institute of Technology
Kate Gleason College of Engineering

Title:

Volume Ray Casting Techniques and Applications using General Purpose
Computations on Graphics Processing Units

I, Michael Romero, hereby grant permission to the Wallace Memorial

Library to reproduce my thesis in whole or part.

Michael Romero

Date

iii

Dedication

For my family, for their love and support,

and for sharing with me the best times of my life.

iv

Acknowledgments

I would like to thank my primary advisor Dr. Muhammad Shaaban for

sparking my interest in the field of computer architecture. His instruction

has led to my passion in the field, giving me satisfaction and fulfillment in

my work. Second I would like to thank Dr. Roy Melton for his invaluable

assistance and attention to detail with this thesis. His availability and

guidance have proven very helpful in the course of writing and

development. Next I would like to thank Dr. Joe Geigel for providing

many of the necessary and thought-provoking resources used in the

development of this thesis. His selection of literature has helped shape

many of the concepts explored in this work. Finally I would like to thank

Dr. Reynold Bailey for both his instruction in the field of computer

graphics, and his remarkable dedication towards his students. His

commitment to teaching and concern for students has been inspirational.

v

Abstract
Volume Ray Casting Techniques and Applications using General

Purpose Computations on Graphics Processing Units

Michael Romero

Traditional 3D computer graphics focus on rendering the exterior of ob-

jects. Volume rendering is a technique used to visualize information cor-

responding to the interior of an object, commonly used in medical imag-

ing and other fields. Visualization of such data may be accomplished by

ray casting; an embarrassingly parallel algorithm also commonly used in

ray tracing. There has been growing interest in performing general purpose

computations on graphics processing units (GPGPU), which are capable ex-

ploiting parallel applications and yielding far greater performance than se-

quential implementations on CPUs. Modern GPUs allow for rapid accelera-

tion of volume rendering applications, offering affordable high performance

visualization systems.

This thesis explores volume ray casting performance and visual quality

enhancements using the NVIDIA CUDA platform, and demonstrates how

high quality volume renderings can be produced with interactive and real

time frame rates on modern commodity graphics hardware. A number of

techniques are employed in this effort, including early ray termination, super

vi

sampling and texture filtering. In a performance comparison of a sequential

versus CUDA implementation on high-end hardware, the latter is capable of

rendering 60 frames per second with an impressive price-performance ratio

heavily favoring GPUs.

A number of unique volume rendering applications are explored includ-

ing multiple volume rendering capable of arbitrary placement and rigid vol-

ume registration, hypertexturing and stereoscopic anaglyphs, each greatly

enhanced by the real time interaction of volume data. The techniques and

applications discussed in this thesis may prove to be invaluable tools in

fields such as medical and molecular imaging, flow and scientific visual-

ization, engineering drawing and many others.

vii

Contents

Dedication . iii

Acknowledgments . iv

Abstract . v

Glossary . xviii

1 Introduction . 1

2 Motivation . 8
2.1 Technology . 8
2.2 Applications . 11

3 CUDA Background . 13
3.1 CUDA Architecture . 13

3.1.1 Thread Organization 13
3.1.2 Memory Hierarchy 15
3.1.3 Multiprocessors . 17
3.1.4 Compute Model 18

4 Volume Rendering Concepts and
Existing Work . 21
4.1 Introduction . 21
4.2 Ray Casting . 23

viii

4.2.1 Description . 23
4.2.2 Ray Casting Process 23
4.2.3 Shortcomings and Enhancements 26
4.2.4 Early Ray Termination 27
4.2.5 Octree Space Subdivision 28
4.2.6 Empty Space Skipping 28
4.2.7 Supersampling . 28

4.3 Slicing Methods . 30
4.3.1 Description . 30
4.3.2 3D Texturing Process 31
4.3.3 Shortcomings and Enhancements 33

4.4 Analysis of Techniques for CUDA 34
4.5 Existing CUDA Implementations 35

4.5.1 Jusub Kim’s Thesis 36
4.5.2 CUDA SDK Volume Renderer 38

5 Implementation and Features 40
5.1 Volume Rendering Framework 40
5.2 Load Balancing . 42
5.3 CUDA Multiprocessor Occupancy 49
5.4 Constant Memory and the World Structure 52
5.5 Texture Memory, Volumes and Filtering 52
5.6 Early Ray Termination . 54
5.7 Supersampling . 56
5.8 Multiple Volume Rendering 59
5.9 Hypertextures . 64
5.10 Stereoscopic Anaglyph . 66

ix

6 Performance Results . 68
6.1 Sequential vs. CUDA Implementations 68
6.2 Register Usage . 70
6.3 Threads Per Block . 73
6.4 Texture Filtering Modes . 75
6.5 Early Ray Termination . 76
6.6 Supersampling . 78
6.7 Voxel Resolution . 79
6.8 Number of Volumes . 80
6.9 Anaglyph Results . 82

7 Analysis . 84
7.1 CUDA vs. Sequential Performance 84
7.2 Price vs. Performance . 85
7.3 CUDA Object Orientation Difficulties 87
7.4 CUDA Texture Memory Difficulties 88
7.5 Occupancy and Partitioning Analysis 88
7.6 Texture Filtering Analysis 90
7.7 Early Ray Termination Analysis 91
7.8 Supersampling Analysis 93
7.9 Analysis of Volume Characteristics 94
7.10 Anaglyph Analysis . 97

8 Thoughts for Investigation and
Future Work . 100
8.1 Performance . 100
8.2 Image Quality . 102
8.3 User Interaction . 103
8.4 Applications . 104

x

9 Conclusion . 108

Bibliography . 110

A Compiling the Volume Renderer 113

B Using the Volume Renderer 114

C Structure of Included CD 116

D Listing of Sample Volumes 118

xi

List of Tables

3.1 Selection of graphics devices and their respective compute
models [10]. 19

6.1 A performance comparison in frames per second between
the simple sequential volume renderer and the CUDA vol-
ume renderer. 70

6.2 A performance comparison in frames per second between
devices of two different compute models obtained by vary-
ing the register usage of each thread. The number of threads
per block remained a constant 64 threads. 71

6.3 A performance comparison in frames per second between
devices of two different compute models obtained by vary-
ing the threads per block. The register usage remained a
constant 32 registers. 74

6.4 A performance comparison in frames per second of point
and linear texture filtering modes, across different devices. . 75

6.5 A performance comparison in frames per second of ray march
order and early ray termination, across different devices. F-
to-B indicates front to back ordering, B-to-F indicates back
to front ordering, and a threshold of NA indicates early ray
termination was not enabled. The buckyball volume in-
cluded in the NVIDIA SDK was used when collecting data. . 77

xii

6.6 A performance comparison in frames per second of ray march
order and early ray termination, across different devices. F-
to-B indicates front to back ordering, B-to-F indicates back
to front ordering, and a threshold of N/A indicates early ray
termination was not enabled. The sphere testing volume
[13] was used when collecting data. 78

6.7 A performance comparison in frames per second of various
degrees of supersampling across different devices. 79

6.8 A performance comparison in frames per second of render-
ing volumes with varying voxel resolutions across different
devices. Hypertextures were generated with varying voxel
resolutions to collect the data. Note that a 512x512x512
volume could not be rendered using the GeForce 9600m GT
because it exceeds the memory capacity of the device. 80

6.9 A performance comparison in frames per second of render-
ing multiple volumes different devices. The buckyball vol-
ume included in the NVIDIA SDK was used when collect-
ing data. Every volume is placed in the center of the scene,
overlapping each other. 81

6.10 A performance comparison in frames per second of render-
ing multiple volumes different devices. The buckyball vol-
ume included in the NVIDIA SDK was used when collect-
ing data. The volumes were placed from left to right, bottom
to top in a 8x4 2D grid configuration which can be seen in
figure 5.12. 82

xiii

6.11 A performance comparison in frames per second of normal
vs. anaglyph rendering methods across different devices.
The engine volume seen in figure 5.17 was used to collect
results. 83

7.1 A price-performance comparison between a primitive se-
quential volume rendering implementation running on a CPU
and the CUDA volume rendering implementation running
on a GPU. 86

xiv

List of Figures

1.1 GFLOPS Performance Comparison of Modern GPUs vs.
CPUs. Courtesy of NVIDIA [10]. 2

1.2 A buckyball volume rendered as a polygon mesh using the
marching cubes algorithm. This rendering was produced us-
ing the marching cubes example application in the NVIDIA
CUDA SDK. 6

1.3 A buckyball volume rendered using volume ray casting, a
direct volume rendering algorithm. This rendering was pro-
duced using the volume rendering example application in
the NVIDIA CUDA SDK. 7

3.1 CUDA Computational Hierarchy. 15
3.2 CUDA Memory Hierarchy. 17

4.1 The four basic steps of volume ray casting:
(1) Ray Casting: cast a ray from the viewplane.
(2) Sampling: sample the intersected volume along the path
of the ray.
(3) Shading: compute a color value for each voxel based on
a shading model.
(4) Compositing: accumulate color and assign to a pixel on
the viewplane
Courtesy of Wikipedia [17]. 24

xv

4.2 Pseudo code of a fragment-program-based volume ray-caster
[15]. 24

4.3 The Steps of a Typical Texture-Based Volume Rendering
Implementation [4]. 32

4.4 Performance Comparison (CPU v.s. CELL v.s. CUDA) [5]. . 37

5.1 Example of a ray traced scene used to collect partitioning
performance statistics. 43

5.2 Static and Dynamic Thread Partitioning Methods. 45
5.3 Performance of Static and Dynamic Partitioning Methods. . 46
5.4 Actual partitioning of threads in the volume renderer. The

blue channel is increased based on the thread ID within a
block, and the red channel is increased based on the block
ID within a grid. This shows dynamic partitioning of line
segments of a grain size equal to the threads per block; in
this case, 64. 48

5.5 An image of a 32x32x32 hypertexture rendered using point
filtering (left) and linear filtering (right). 54

5.6 Pseudocode used to accumulate color by ray marching through
a volume from front to back. 55

5.7 Pseudocode used to accumulate color by ray marching through
a volume from back to front. 55

5.8 Four images showing a hypertexture rendered in back to
front order (top left), front to back order (top right), front
to back order with an early ray termination threshold of 0.5
(bottom left) and front to back order with an early ray ter-
mination threshold of 0.95 (bottom right). 56

xvi

5.9 Four images showing a simulated Buckyball rendered using
point filtering with no supersampling (top left), point filter-
ing with 16x supersampling (top right), linear filtering with
no supersampling (bottom left) and linear filtering with 16x
supersampling (bottom right). 58

5.10 Pseudocode for supersampling. 59
5.11 An image showing six volumes rendered simultaneously.

From left to right, top to bottom they are a protein molecule,
an engine block a hypertexture, an orange, a monkey’s skill
and a frog. 60

5.12 An image showing 32 individual volumes, the current max-
imum number of displayable volumes in the renderer. 62

5.13 An image showing an MRI scan (left) and a CT scan (right)
of a monkey’s head. The density factor of the MRI scan is
one fifth the density factor of the CT scan. 63

5.14 An image showing an MRI scan and the CT scan of a mon-
key’s head nested together. The density factor of the MRI
scan is one fifth the density factor of the CT scan to high-
light the results of the CT scan. 64

5.15 Two images showing the density modulation function of
a hypertexture. The image to the left was generated with
voxel values between [0,1]. The image to the right was gen-
erated using voxel values between [-0.5,0.5], and reinter-
preted as unsigned values. 65

5.16 Pseudocode for anaglyph rendering. 67

xvii

5.17 An image showing a stereoscopic anaglyph of an engine
block. To properly view the image, it must be reproduced in
color, and the observer requires “3D glasses” with red and
cyan lenses. 67

6.1 Renderings of a 32x32x32 hypertexture from the simple se-
quential volume renderer (left) and the CUDA volume ren-
derer (right). 69

6.2 Charts produced by the CUDA Occupancy Calculator show-
ing occupancy by varying the register usage for a compute
model 1.1 device. 72

6.3 Charts produced by the CUDA Occupancy Calculator show-
ing occupancy by varying the register usage for a compute
model 1.3 device. 73

6.4 Images of the two models used for gathering performance
results for early ray termination. The images are of a Buck-
yball (left) and a Sphere distance field (right). 77

7.1 A graph of the results showing how performance scales with
the voxel resolution of the rendered volume. 95

xviii

Glossary

block

A grouping of threads dynamically allocated to the next available mul-

tiprocessor. 15

GPGPU

General-Purpose computing on Graphics Processing Units. 1

grain size

The amount of work dynamically partitioned among multiprocessors,

synonymous with threads per block. 47

grid

A collection of thread blocks executing the same kernel. 15

kernel

The code that each thread executes on the graphics device, the entry

point for computation on the device. 14

multiprocessor

A cluster of computational resources on the graphics device. There

may be one or several depending on the device. 19

xix

multiprocessor occupancy

The ratio of the number of active warps on a multiprocessor to the max-

imum number of active warps. Determined by devices compute model,

threads per block, registers per thread and shared memory usage. 50

ray casting

An embarrassingly algorithm for direct volume rendering. 23

thread

The most fundamental level of the CUDA computational hierarchy,

where several perform computations in parallel. 15

transfer function

A function used to corollate a density with a color and opacity. 34

voxel

Discrete volume element, like a three dimensional pixel. 3

warp

A group of 32 threads from the same thread block starting at the same

program address on the multiprocessor. 19

1

Chapter 1

Introduction

Technology trends and advances in graphics techniques (such as those found

in modern video games and simulations) have led to a need for extremely

powerful dedicated computational hardware to perform the necessary calcu-

lations. Graphics hardware companies such as AMD/ATI and NVIDIA have

developed graphics processors capable of massively parallel processing,

with large throughput and memory bandwidth typically necessary for dis-

playing high resolution graphics. However, these hardware devices have the

potential to be repurposed and used for other non-graphics-related work, or

programmed outside the bounds of traditional graphics APIs. This is com-

monly refered to as “GPGPU,” or “General-purpose computing on graphics

processing units.” A number of frameworks allows for graphics devices

to be repurposed and programmed in a general fashion, such as Stanford’s

Brook programming language, AMD’s CTM (Close To Metal) technology,

and NVIDIA’s programming interface known as CUDA (Compute Unified

Device Architecture). Utilizing graphics devices to execute massively paral-

lel algorithms will yield a significantly large speedup over sequential imple-

mentations on conventional CPUs, essentially transforming them into high

2

performance computing nodes. Figure 1.1 illustrates the potential compu-

tational throughput of NVIDIA’s discrete graphics devices in contrast with

CPU offerings from Intel.

Figure 1.1: GFLOPS Performance Comparison of Modern GPUs vs. CPUs. Courtesy of
NVIDIA [10].

With the expanded capabilities of graphics processors that programming

frameworks like CUDA afford, it is possible to achieve performance that

has previously been out of reach. Real-time or interactive manipulation of

data is a common use of these technologies, which is often beneficial to the

exploration and understanding of these particular data sets. Many excel-

lent candidates exist for GPGPU implementations, but the work to be done

3

by these applications must be parallelizable; ideally, embarrassingly paral-

lel. Target applications include audio and video processing, physics simu-

lations, flow dynamics, digital signal processing, computer vision, weather

modeling, neural networks, medical imaging and many more. In the case

of medical imaging, it is desirable to reconstruct models obtained from CT

(computed tomography) scans, and view the results. The data obtained from

a CT scan is “voxel” data, and requires a certain rendering technique in or-

der to view and interpret the results.

Volume rendering describes a specific paradigm of visualizing three-

dimensional data. A 3D model is typically constructed from a polygon

mesh which defines only the surface of the model. With volume render-

ing however, the data describing the model defines the interior volume of

the model as well, so the internal details of a 3D object may be assigned

“optical properties” such as color and opacity. Volumetric data is comprised

of “voxels” or volume elements, and can be viewed a number of ways. One

option is to approximate and render a polygon mesh from the voxel data.

One of the most common approximation methods is the “marching cubes”

algorithm. This algorithm and other approximation algorithms allow the vi-

sualization of the approximate surface structure of a volume, however they

do not allow visualization of the volume’s interior, and are not suitable for

the purposes of this thesis. Direct volume rendering allows the visualization

of the interior of objects, where the exact voxel data is rendered by assigning

4

optical properties to each voxel element in the scene. Direct volume render-

ing can be achieved by a number of techniques including volume ray casting

[15] or plane composing algorithms such as texture-based rendering [4] or

shear-warping [7]. Additionally, various optimization and quality enhance-

ment techniques exist, such as early ray termination, volume segmentation,

empty space skipping, anti-aliasing, interpolation of voxel data, illumina-

tion models and more. Figure 1.2 shows an approximated volume render-

ing of a buckyball represented as a polygon mesh by using the marching

cubes algorithm. Figure 1.3 shows a direct volume rendering of a buckyball

achieved using the ray casting algorithm. Comparing these two images, it is

clear that more information can be gleaned by assigning color and opacity to

the density of the volume and visualizing the volumes interior than strictly

visualizing the approximated surface of the volume.

This thesis focuses on implementing direct volume rendering techniques

using commodity graphics cards, specifically the volume ray casting ap-

proach, though other approaches may benefit from the results of this work.

NVIDIA’s CUDA was chosen as the target GPGPU platform, and this docu-

ment will discuss the approach to implementing a volume ray casting system

using this platform, the advantages and speedups obtained, as well as diffi-

culties encountered. This work’s unique contributions lie in the implemen-

tation of some of the visual and performance enhancements on the CUDA

platform, development of an extensible and easily manageable framework

for ray casting, and particularly in the advancement of volume rendering

5

applications made possible by these enhancements such as the interactive

rendering of multiple volumes and stereoscopic anaglyphs. The volume ray

casting software, all of the effects achieved, and applications demonstrated

are capable of running with interactive performance on commodity off the

shelf devices, including laptops, and across Microsoft Windows and Mac

OS X operating systems.

This thesis has been organized to best place the volume rendering system

developed in context. Chapter 2 discusses the motivation behind volume

rendering, and possible applications of this rendering technique. Chapter 3

provides the necessary background information to understand how CUDA

may be used to exploit volume rendering algorithms. Chapter 4 examines

common volume rendering concepts, the existing efforts in the field, and

the potential that exists to improve on these efforts. Chapter 5 describes the

implementation details, features and novel contributions of the volume ren-

dering system developed. Chapter 6 shows the performance characteristics

of the volume renderer by listing the framerate of the system while vary-

ing a number of factors. Chapter 7 analyzes the quality, performance and

effectiveness of each applicable volume rendering technique or application.

Chapter 8 contains ideas and considerations for the future of the system de-

veloped in this thesis and volume rendering in general. Finally, chapter 9

offers closing remarks on the effectiveness of the system developed.

6

Figure 1.2: A buckyball volume rendered as a polygon mesh using the marching cubes
algorithm. This rendering was produced using the marching cubes example application in
the NVIDIA CUDA SDK.

7

Figure 1.3: A buckyball volume rendered using volume ray casting, a direct volume ren-
dering algorithm. This rendering was produced using the volume rendering example appli-
cation in the NVIDIA CUDA SDK.

8

Chapter 2

Motivation

To place the volume rendering efforts of this thesis in the proper context,

it is necessary to examine the technologies available capable of perform-

ing volume rendering, and the potential applications for volume rendering.

When the potential applications are considered, ideal technologies for these

applications may be identified.

2.1 Technology

In most common modern day implementations of visualizing three-dimensional

models on a computer, a polygon consisting of a mesh of triangles is used to

represent the figure to be displayed. This polygon mesh describes the sur-

face of the model, and various techniques and special effects are applied to

add detail and light to a scene described by polygons. Volumetric rendering

differs from traditional visualization technique by using a 3D model rep-

resented by “voxel” or “volumetric elements” rather than a polygon mesh.

Voxel representations describe a 3D model as a set of values on a regular

grid existing in 3D space. In other words, a voxel is a discrete point in 3D

9

space, and these voxels describe the interior as well as exterior surface of

the model. This differs from polygon meshes, where the mesh describes a

series of points on the surface of the model but not the interior of the model.

This fundamental difference is one of the primary advantages of volumetric

rendering over traditional rendering schemes: voxel-based models contain

information about their volume.

Current generation specialized graphics hardware is targeted specifically

for rendering polygon meshes, and the performance is more than adequate

to render scenes interactively in real-time. Volume rendering systems exist

in a variety of fields. Particular interest in volume rendering comes from

the medical imaging field, because body scans obtained from patients are

volumetric in nature, and it is very desirable to investigate these body scans

interactively. Volume rendering systems have also been used in a num-

ber of video games for their ability to render complex terrain. These sys-

tems have historically done all the necessary rendering work on the CPU.

However, the common consumer-level graphics hardware offerings from

NVIDIA and AMD/ATI do not targeting volume rendering. Advances in

graphics hardware have ignored volumetric rendering, and the necessary

performance to render large voxel-based data sets with a high level of de-

tail interactively has been very difficult or impossible to achieve. Fortu-

nately dedicated consumer-level graphics hardware has been identified for

its massively parallel computational abilities. With the introduction of pro-

grammable shaders in modern graphics hardware, pixel shaders have been

10

utilized for volume rendering acceleration [6]. Furthermore, graphics hard-

ware companies are now releasing APIs and frameworks which expose the

architecture of these devices for general purpose programming. Currently,

the most popular and prevalent API is NVIDIA’s CUDA platform, which

stands for “Compute Unified Device Architecture.” This platform allows

for the programming of any CUDA capable device to perform general pur-

pose computations in parallel.

This thesis implements a system capable of rendering and interacting

with volumetric data sets by programming graphics hardware to perform

the general purpose computations necessary for volume rendering. This

is known as General Purpose computation on Graphics Processing Units

(GPGPU). The target platform is NVIDIA’s CUDA, but the general C/C++

ray casting parallel algorithm should also be adaptable to other dedicated

graphics hardware, such as the offerings from AMD/ATI, Intel, or SGI. The

volume renderer demonstrates a large improvement in performance and at

a high level of detail over rendering using a CPU. The system is capable of

interactively rendering relatively large data sets, larger and more complex

than those which can be rendered interactively on the CPU. Furthermore,

this thesis also demonstrate a number of applications of volume-based ren-

dering; specifically the rendering of hypertextures, multiple volumes, and

the visualization of stereoscopic anaglyphs.

11

2.2 Applications

Several applications exist which would benefit from an interactive volume

rendering system, such as medical imaging applications. Common body

scans such as CT and MRI scans generate images of several “slices” of a

patient’s body. These slices may be reassembled into voxel data. Using the

system developed in this thesis, this data set may be displayed and explored

interactively by doctors or surgeons. Furthermore, the volume rendering

system developed here allows for multiple volumes to be positioned in the

same space, performing a type of rigid registration. This would allow doc-

tors to gain new insight on patients by exploring multiple medical scans

simultaneously.

While the possibility of rendering static volumetric data interactively has

many applications, the ability to deform these data sets opens the way to

many more possibilities. Current 3D modeling systems operate by plac-

ing vertices and exporting meshes based on those vertices. With volumetric

data, a 3D model could instead be created by “sculpting” the model. Sim-

ilar to the way popular image editing tools provide brushes to paint with,

and blending tools to smooth edges, a voxel painting system could provide

cube or sphere brushes as an extension to constructive solid geometry, and

smoothing functions to round or blend together 3D models. In the case of

medical images, surgeons could use the volumetric representation of a hu-

man body to simulate surgery. In real-time, a surgeon could practice the

12

cutting, bending, pinching and suturing of a completely virtual body; some-

thing that has not yet been efficiently demonstrated.

Voxels have been used in computer games and simulations to define com-

plex terrain geometry in lieu of another popular technique known as “height

maps.” Height maps are gray scale images where the light and dark spots

are converted into peaks and valleys in terrain. The shortcoming is that

height maps do not support concave structures. Voxels offer a solution to

this problem, providing the additional information.

In computer simulations and gaming, volumetric data could provide much

higher levels of detail and realism for certain objects. Much like the ad-

vancements ray tracing brings to lighting, volume rendering could provide

similar advancements to geometry. Deformable volumes would allow a

player to alter the environment without pre-computed demolition models.

For example, using a physics system, it would be possible to blow up walls,

dent trash cans, or shatter glass, and perform these actions on anything in a

scene without the need to pre-program a model’s reaction to certain behav-

ior.

It would also be possible to interact with volumes in ways typically re-

served for other media. For example, stereoscopic visualization is becoming

more prevalent in video games and motion pictures. Volumes can also be

visualized using stereoscopy. This thesis provides a system for rendering

stereoscopic anaglyphs of volumes.

13

Chapter 3

CUDA Background

Background information on NVIDIA’s CUDA platform is described here. A

fundamental understanding of CUDA is necessary to understand how vol-

ume rendering algorithms may be exploited by its architecture.

3.1 CUDA Architecture

The CUDA programming guides [9], [10] provided by NVIDIA Corpora-

tion document the architecture of the CUDA framework and runtime, the

CUDA programming paradigm, and list several performance considerations

when programming for CUDA. The following summarizes the CUDA ar-

chitecture in terms of thread organization, memory hierarchy, processing

elements and compute models.

3.1.1 Thread Organization

In the CUDA processing paradigm (as well as other paradigms similar to

stream processing) there is a notion of a “kernel.” A kernel is essentially a

mini-program or subroutine. Kernels are the parallel programs to be run on

the device (the NVIDIA graphics card inside the host system). A number

14

of primitive “threads” simultaneously execute a kernel program. Batches of

these primitive threads are organized into “thread blocks.” A thread block

contains a specific number of primitive threads, chosen based on the amount

of available shared memory, as well as the memory access latency hiding

characteristics desired. The number of threads in a thread block is also

limited by the architecture to a total of 512 threads per block. Each thread

within a thread block can communicate efficiently using the shared memory

allocated to each thread block. Using this shared memory, all threads can

also sync within a thread block. Every thread within a thread block has its

own thread ID. Thread blocks are conceptually organized into 1D, 2D or 3D

arrays of threads for convenience.

A “grid” is a collection of thread blocks of the same thread dimensional-

ity which all execute the same kernel. Grids are useful for computing a large

number of threads in parallel since thread blocks are physically limited to

only 512 threads per block. However, thread blocks within a grid may not

communicate via shared memory, and consequently may not synchronize

with one another.

Figure 3.1 demonstrates the thread hierarchy described. Here, kernel 1

contains a 3x2 grid of thread blocks. Each thread block is a 5x3 block of

threads, for a total of 90 threads in kernel 1. Kernel 2 may contain a different

organization of thread blocks, which in turn may contain an array of threads

different from the arrays in the thread blocks of kernel 1.

15

Figure 3.1: CUDA Computational Hierarchy.

3.1.2 Memory Hierarchy

There are several levels of memory on the GPU device, each with distinct

read and write characteristics. Every primitive thread has access to private

“local memory” as well as registers. This “local memory” is really a mis-

nomer; the memory is private to the thread, but is not stored local to the

thread’s registers; instead it is located off-chip in the global GDDR memory

available on the graphics card. Every thread in a thread block also has access

to a unified “shared memory,” shared among all threads for the life of that

thread block. Finally, all threads have read/write access to “global memory,”

16

which is located off-chip on the main GDDR memory module, which there-

fore has the largest capacity but is the most costly to interact with. There

also exists read-only “constant memory” and “texture memory”, in the same

location as the global memory.

The global, constant and texture memory are optimized for different

memory usage models. Global memory is not cached, though memory

transactions may be coalesced to hide the high memory access latency.

These coalescence rules and behaviors are dependent on the particular de-

vice used. The read-only constant memory resides in the same location as

global memory, but this memory may be cached. On a cache hit, regardless

of the number of threads reading, the access time is that of a register access

for each address being read. The read-only texture memory also resides in

the same location as global memory and is also cached. Texture memory

differs from constant memory in that its caching policy specifically exploits

2D spatial locality. This is due to the use of “textures” in 3D graphics:

the use of 2D images to texture the surface of 3D polygons. Textures are

frequently read and benefit from caching the texture spatially.

Figure 3.2 shows the scope of each of the memory segments in the CUDA

memory hierarchy. Registers and local memory are unique to a thread,

shared memory is unique to a block, and global, constant, and texture mem-

ories exist across all blocks. It’s important to note that local memory has the

same performance characteristics as global memory.

17

Figure 3.2: CUDA Memory Hierarchy.

3.1.3 Multiprocessors

CUDA capable GPUs are constructed with the Tesla architecture. CUDA

applications may be run on any card which supports this architecture, but

each GPU device may have different specifications and therefore a slightly

different set of supported features and a different number of available com-

putational resources. When a kernel is invoked, each thread block executes

18

on a “multiprocessor.” This multiprocessor contains the resources to sup-

port a certain number of threads.

• 8 Scalar Processor cores

• 2 special function units for transcendentals

• 1 multithreaded instruction unit

• On-chip shared memory

One or more thread blocks are assigned to a multiprocessor during the

execution of a kernel. The CUDA runtime handles the dynamic schedul-

ing of thread blocks on a group of multiprocessors. The scheduler only

assigns a thread block to a multiprocessor when enough resources are avail-

able to support the thread block. Each block is split into SIMD (Single-

Instruction Multiple-Data) groups of threads called “warps.” The SIMD

unit creates, manages, schedules and executes 32 threads simultaneously to

create a warp. Every warp is synchronous, and therefore care must be taken

to ensure that certain threads within a warp do not take substantially longer

than other threads in that same warp, because the warp only executes as fast

as the slowest thread. There are a number of programming hints provided

in the CUDA programming guide to help prevent such warp divergence.

3.1.4 Compute Model

Every CUDA-enabled device has a compute capability number. This num-

ber indicates a standard number of registers, memory size, etc. for all de-

vices of that capability number. Compute capability numbers are backwards

19

compatible. The CUDA Programming Guide [10] available from NVIDIA

details the compute capabilities of various graphics devices, an excerpt from

which can be found in figure 3.1.

Num Multiprocessors Compute Capability
Tesla C870 16 1.0
GeForce 9600m GT 2 1.1
GeForce 9800GT 14 1.1
GeForce GTX260 24 1.3

Table 3.1: Selection of graphics devices and their respective compute models [10].

The primary devices used for the development of this thesis are the GeForce

9600m GT, a discrete graphics card found in mid-high range laptops, and

the GTX260, a graphics card found in mid-high range gaming desktops. At

the time of writing, the GTX200 series conforms to the most recent com-

pute model. This latest compute model, 1.3, has a number of significant

improvements over previous compute models, including the following.

• Double precision support

• Higher memory bandwidth

• Double the number of available registers

The double precision floating point support is a feature not often used in

computer graphics, but is frequently used in various scientific and engineer-

ing calculations, which may performed using CUDA. The higher memory

bandwidth decreases transfer times between the host and the device. Dou-

bling the number registers from 8192 to 16384 per multiprocessor allows for

20

greater multiprocessor occupancy, resulting in higher computational perfor-

mance.

21

Chapter 4

Volume Rendering Concepts and
Existing Work

This chapter outlines several fundamental volume rendering concepts and

references the various academic publications in which they are discussed.

A brief analysis of the rendering techniques is made, and their suitability

for implementation on the CUDA platform is also considered. Finally this

chapter takes survey of existing CUDA volume rendering implementations.

4.1 Introduction

There are two primary categories of algorithms associated with direct vol-

ume rendering. The first, ray casting algorithms, operate by casting a ray

down the line of sight for every pixel in the image of the scene. Each ray

assigns a color value to a pixel by compositing the color and transparency

of the voxels in the volumetric model intersected by each respective ray.

Ray casting algorithms may use early ray termination [14], as well as oc-

tree subdivision [8] and empty space skipping [6] to reduce computational

complexity by occluding certain volumetric data. Generally speaking, the

22

complexity is relative to the image size times the depth of the volume [2].

Plane composing algorithms are the other main category of direct vol-

ume rendering algorithms. These algorithms operate by compositing several

slices which comprise a volumetric model. These algorithms tend to work

best when the view-plane is fixed parallel to the model, so that each of the

voxels being composed may be accessed on separate planes. Texture-based

rendering is one key technique which composites slices of volumetric data.

Shear-Warp factorization can be used to enhance performance of rendering

volume slices by applying a shearing transformation to exploit spatial co-

herency of the model, reducing computational complexity of rendering a

volume from an arbitrary viewing angle [7]. The computational complexity

is relative to the volume size [2].

The following is a brief overview of the various rendering techniques,

and comparisons of their advantages and shortcomings, such as compu-

tational complexity, required memory capacity, and visual quality. These

techniques will be used to identify the most suitable category of techniques

to target for enhancements, as well as to provide a relative comparison of

computational efficiency and quality.

23

4.2 Ray Casting

4.2.1 Description

One primary technique for rendering volumes is known as “ray casting.”

Ray casting is an object order rendering technique, where the computations

are performed based on the voxels in the volumetric model intersected by

each ray. Ray casting has been overlooked as a primary volume render-

ing algorithm in favor of slicing methods, in part because the advances in

graphic acceleration hardware brought optimized texturing units capable of

greatly enhancing the performance of 3D texture-based rendering methods.

However, more recent trends in hardware graphics acceleration have given

way to CUDA (as well as other GPGPU platforms), putting the performance

of ray casting methods on par with other slicing methods and reaffirming

ray casting as a worthwhile volume rendering effort. Figure 1.3 shows an

example rendering of a ray casted volume.

4.2.2 Ray Casting Process

The general ray casting procedure is similar for most volume ray casting

systems. For each pixel in a resulting image, a single ray is cast through the

scene, intersecting with the volumes to be rendered. These rays may be cast

independently, resulting in full pixel-parallelism. Each voxel intersected

with the ray has a certain color and opacity. Shading can be applied based

on the angle of the volume to a light source. The ray accumulates a value

24

that is a function of color and opacity for each voxel the ray intersects, and

renders a pixel. This approach fits well into a parallel stream processing

paradigm, exhibited by fragment processors, as well as the CUDA archi-

tecture. Figure 4.1 shows a graphical representation of the basic ray casting

procedure. Figure 4.2 details the pseudo code for a fragment-program-based

implementation of a volume ray-caster, described by S. Stegmaier et al.for

a volume rendering framework [15].

Figure 4.1: The four basic steps of volume ray casting:
(1) Ray Casting: cast a ray from the viewplane.
(2) Sampling: sample the intersected volume along the path of the ray.
(3) Shading: compute a color value for each voxel based on a shading model.
(4) Compositing: accumulate color and assign to a pixel on the viewplane
Courtesy of Wikipedia [17].

Compute volume entry position

Compute ray of sight direction

While in volume

Lookup data value at ray position

Accumulate color and opacity

Advance along ray

Figure 4.2: Pseudo code of a fragment-program-based volume ray-caster [15].

25

A great deal of emphasis has been placed on fitting the ray casting pro-

cess into a stream processing system. Stream processing is essentially a sys-

tem where chain of microprocessing units perform simple “kernels” (small

programs or subroutines), with one microprocessor’s output feeding directly

to the input of the next. The advantage to stream processing coincide with

the advantages of pipelining, by splitting the work into stages and feeding

the pipeline in a specific interval, so that the pipeline produces a final re-

sult every interval. Stream processing takes this concept further by having a

data “stream” run through several kernels, with dedicated hardware (and of-

ten scratchpad memory) for each kernel performed, without the overhead of

context switching one subroutine to another. This offers very high through-

put of a complex series of operations. Modern graphics hardware performs

this kind of stream processing in SIMD fashion, where several data-parallel

homogeneous streams may be computed with each instruction.

In its relation to ray casting, initial efforts spawned from Purcell’s publi-

cation of a ray tracing technique that took advantage of the stream process-

ing paradigm of modern graphics hardware [12]. Following this publication,

one of the most ground-breaking volume ray casting papers was published

by Kruger and Westermann, where a ray casting approach that uses multiple

passes over the scene (for early ray termination) to render an image using

shader model 2.0 was described [6]. A volume rendering framework was

finally described by S. Stegmaier et al., which requires only one pass by

using a shader model 3.0 approach that supports dynamic branching [15].

26

The author of the pseudo code in figure 4.2 envisioned using a 3D tex-

ture for the lookup of the raw data used to accumulate color and opacity

information. 3D textures are described in section 4.3.1 of this document.

In the CUDA architecture, texture memory exhibits the most desirable stor-

age and access properties in a system. Texture memory is located in main

memory on the device, and therefore has the largest capacity on the device

(exact size dependent on the specific hardware device). Texture memory

is constant and is optimized for data exhibiting 2D spatial locality through

its caching system [10]. Considering its capacity and caching properties,

texture memory is a prime target for volumetric data storage.

4.2.3 Shortcomings and Enhancements

Ray casting algorithms have historically required multiple passes to render

a scene [6], resulting in long rendering times when compared with other

slicing-based methods. Although a single-pass implementation of the ray

casting algorithm has been recently discussed [15], this approach requires

support for dynamic flow control within the data streams. While NVIDIA’s

CUDA platform is capable of performing dynamic flow control, it requires

significant effort to implement efficiently, and often results in a performance

hit.

Due to the relatively lengthy rendering time involved with ray casting, a

number of performance enhancements have been identified to speed up the

process. Early ray termination, octree space subdivision and empty space

27

skipping are all methods employed to reduce the degree of computations

that must be performed on each ray, leading to quicker renderings. In addi-

tion to the various performance enhancements for volume ray casting, there

are also image quality enhancement techniques such as supersampling.

4.2.4 Early Ray Termination

Early ray termination can be performed when a volume is rendered in front-

to-back order (as opposed to back-to-front order). This typically requires

multiple passes through the volume to extract the necessary information

about the front and back faces. If a ray leaves the volume being traced, the

ray terminates and no more computations are performed. Furthermore, this

technique employs a threshold value, indicating a maximum opacity/density.

As a ray progresses and opacity and color is accumulated, the resulting com-

posited value is checked against the threshold. If the integrated opacity

reaches approximately 1 (within the threshold), it is decided that the re-

maining voxels along the ray will not significantly contribute to the color

of the pixel being rendered, and the ray will terminate [14]. This early ter-

mination enhancement efficiently reduces the degree of computation while

preserving the visual integrity of the rendered image.

28

4.2.5 Octree Space Subdivision

Octrees are a tree structure commonly employed when dealing with 3D

graphics. In an octree, each parent node may contain either zero or 8 chil-

dren. The 8 children achieve a 2x2x2 regular subdivision of the parent node,

essentially dividing each node into 8 equal parts, or “leaves” [8]. The subdi-

vision of space by the octree is simply a very convenient hierarchical index-

ing mechanism, which is commonly used when performing occlusion. In

volumetric rendering applications, octrees are used to perform empty space

skipping.

4.2.6 Empty Space Skipping

Empty space skipping is a technique that allows a ray, when cast through

a volume, to “jump” through areas of empty space by avoiding sampling

along the ray as long as the ray is intersecting with empty space. This tech-

nique requires a separate data structure to contain the empty space infor-

mation [6]. Octrees are often used to store the statistical information on

the child nodes within the tree, such as the min/max bounds for the region

covered by the node, providing the requisite information to perform space

skipping.

4.2.7 Supersampling

Supersampling or oversampling in general is the act of sampling the scene at

a higher resolution than the resolution displayed, such that each pixel value

29

is calculated by sampling multiple times per pixel. The goal of supersam-

pling is to combat artifacts and aliasing caused by the coarse granularity of

per-pixel sampling. The approach is to sample within a pixel region multiple

times and average the color values returned from each of those samples to

obtain the best possible color representation for a given pixel. The specific

qualities of an image have been identified as causing noticeable artifacts

due to aliasing, most notably, abrupt changes in intensity commonly found

along the silhouette edge of an object in the scene [1]. Adaptive approaches

involving convolution have been used to target these areas of high-contrast

in an image and perform supersampling on these key points.

A number of supersampling distribution techniques exist, most with their

own positive and negative aspects. Some selected examples of sampling

techniques include “Regular” sampling, “Jittered” sampling, “n-Rooks” sam-

pling, “Multi-Jittered” sampling and “Hammersley” sampling. Each of these

techniques is detailed in chapter 5 of [16]. This chapter includes code list-

ings and excellent figures detailing the effects of each sampling technique.

Furthermore, the chapter identifies three characteristics of a well-distributed

2D sampling pattern: the samples are uniformly distributed on a 2D unit

square, projecting the points in the x- and y-directions yields a uniformly

distributed 1D projection, and finally there must be a minimum distance

between samples. Of the examples mentioned here and in [16], only Ham-

mersley sampling exhibits all these characteristics, but is still less than ideal.

Although uniform distribution is desired, regular spacing where the distance

30

between sample points in the x-and y-direction can result in aliasing. Ham-

mersley samples are regularly spaced in the x- and y-directions.

4.3 Slicing Methods

4.3.1 Description

Direct rendering of a volume can be achieved on modern dedicated graphics

cards using a three dimensional texture. A “texture”, in the field of computer

graphics, is an image typically applied to the surface of some geometry in

order to simulate the details and appearance of the surface of that geometry.

A texture in this sense is two dimensional. A 3D texture can be achieved us-

ing a stack of 2D texture slices, which is capable of texturing the volume of

an object. Other 3D texture objects exist in hardware specially designed to

deal with 3D textures. Historically, 3D texture mapping systems were used

by a number of companies in their graphics workstations, such as Silicon

Graphics and their InfiniteReality system. Many modern graphics hardware

devices support 3D Texture Objects.

3D Texturing is an image order rendering technique, meaning computa-

tions are performed based on image size and not based on the number of

objects in the scene. Typically, there are a far greater number of pixels in

a scene than the number of geometric primitives, making most object-order

techniques quicker than image-order rendering techniques. However, in the

case of volume rendering, the complexity of the scene typically exceeds that

31

of the image to be rendered, making the image-order techniques more effi-

cient in most situations. It is generally accepted that, given that nearly all

modern graphics hardware supports 3D texture acceleration, real-time in-

teractive rendering of reasonably sized volumes may be achieved using this

technique [6].

4.3.2 3D Texturing Process

The “optical properties” of the given volume, specified by an “optical model”

(a model which relates the available volume data, typically density, to opti-

cal properties such as the emission and absorption of light) can be defined by

either using data values directly, or by a “transfer function.” Simple trans-

fer functions may be implemented using a fragment shader, but typically a

texture lookup table is used [4].

The sampling and compositing of texture-based volume rendering sys-

tems are typically performed in a series of steps identified in “Volume Ren-

dering Techniques” [4]. The GPUGems books are compilations of advanced

rendering techniques, and are copyrighted by NVIDIA corporation. First,

a series of 2D geometric primitives (proxy polygons perpendicular to the

viewing direction, parallel to the viewing plane) is placed within the vol-

ume. Each of these primitives is assigned coordinates to sample from within

the 3D texture. The proxy geometry is then rasterized, such that each proxy

polygon is rasterized with its respective 2D slice of the 3D texture. The

interpolated texture coordinates are then used as a dependent lookup into

32

the transfer function textures to assign the optical properties to the volume.

Various illumination techniques such as shading may also be applied before

the textures are finally composited.

A texture-based volume rendering implementation typically contains three

primary steps. Figure 4.3 demonstrates these steps. These are initialize, up-

date and draw. Initialize is usually performed only once, while the update

and draw routines are executed when user input is received, and the scene

must be redrawn, for example when the camera changes position or orien-

tation.

Figure 4.3: The Steps of a Typical Texture-Based Volume Rendering Implementation [4].

The initialization routine prepares the data and shader routines to be used

in the volume rendering process. The volume data must be compressed and

downloaded to main memory on the graphics device. Before sending the

volume data, it may first undergo a variety of processing stages, such as the

computation of gradients or downsampling of the data. The initialization

stage is also responsible for the construction of the transfer function lookup

tables, and any shaders used in the rendering process [4].

33

The next step is to update the scene. This step occurs every time user

input is received which changes any properties of the scene being rendered,

or the viewpoint from which the scene is viewed. The proxy geometry is

computed in this stage, with a number of slices through the volume being

computed, and stored in vertex arrays. Vertices are computed by intersect-

ing planes with the volume bounding box (perpendicular to the viewing

angle), and sorting the resulting vertices either clockwise or counter clock-

wise around their center. For each vertex, the corresponding 3D texture

coordinate is calculated. [4].

4.3.3 Shortcomings and Enhancements

Slicing techniques have historically been much faster than ray casting tech-

niques, but most recently the performance gap has closed and these algo-

rithms no longer have such a large performance advantage. Now that the

performance gap is closing, the performance versus quality trade off is be-

coming unbalanced, and images obtained by slicing approaches are of lower

quality than those rendered by ray casting. Slice-based techniques lead to

artifacts due to aliasing and cannot easily model viewing rays which change

direction, as exhibited by refracting volumes [15]. It is also difficult for

slice-based methods to implement more complicated optical models, com-

pared to the ease of implementation of the same optical models using a ray

casting method. These quality issues have been addressed by the use of over

sampling and pre-integration techniques.

34

A number of performance enhancements have been proposed for the var-

ious shortcomings of the 3D texturing approach by integrating specific ray

casting techniques with slice-based approaches. It has been observed that

in the standard implementation of 3D texturing, a number of unnecessary

operations are performed (such as texture fetch operations, numerical oper-

ations, and per pixel blending operations) are performed on fragments that

do not contribute to the final image. Therefore, it was proposed that accel-

eration techniques such as early ray termination and empty-space skipping

be integrated into 3D texturing approaches [6].

For reference, the following are extensions or enhancements to the slic-

ing approach.

• Shear-Warp Factorization [7]

• Volumetric Clipping [14]

• Pre-Integration [14]

• Integration of Ray Casting Techniques [6]

4.4 Analysis of Techniques for CUDA

The ray casting algorithm is embarrassingly parallel, making it an ideal tar-

get for implementation on CUDA. Despite the dynamic branching inherent

in the ray casting algorithm, the algorithm is much easier to exploit using

CUDA than the slicing method. The ray casting approach also has the ad-

vantage of superior image quality when compared to ray casted images due

35

to aliasing, as well as more potential illumination models. Several perfor-

mance enhancements have been identified and listed for ray casting such as

early ray termination, octree subdivision and empty space skipping. Each

of these performance enhancements may be implemented using CUDA. As

discussed, the storage of volume data may also be exploited using CUDA by

placing it in texture memory. Texture memory exhibits a caching policy that

exploits spatial locality; ideal for accessing volume data. The ray casting

approach was chosen for implementation for this thesis due to its parallel

and easily exploitable nature, as well as the ease of implementation of the

standard performance and quality enhancements.

4.5 Existing CUDA Implementations

A small number of efforts to perform volume ray casting using CUDA exist.

However, most of these efforts are non-academic in nature, and are closed

source projects still in development. The most relevant volume ray casting

effort was discovered on NVIDIA’s CUDA website. A recent doctoral thesis

released in May 2008 by Jusub Kim at the University of Maryland, College

Park, focuses on volume ray casting using the CUDA platform, as well as

the CELL Broadband Engine [5]. A second relevant volume ray casting

on CUDA system which deserves mention is an example volume rendering

application provided with the NVIDIA CUDA SDK.

36

4.5.1 Jusub Kim’s Thesis

Kim’s doctoral thesis makes a number of advancements in ray casting on

the CUDA platform and the CELL Broadband Engine [5]. First, new out-

of-core data management techniques were implemented; specifically a new

layout scheme of the slice data used to compose the volume and a new mul-

tidimensional indexing structure. Second, an efficient stream-based paral-

lel implementation of volume ray casting was implemented on the CELL

processor and then extended to the CUDA platform. This implementation

specifically optimized two of the primary ray casting performance tech-

niques, early ray termination and empty space skipping.

The results of Kim’s CUDA implementation show CUDA as the clear

champion of the three architectures assessed (NVIDIA’s CUDA on an 8800GTX,

IBM’s CELL processor and Intel’s Xeon processor). The CUDA implemen-

tation achieved a 1.5x speedup over the CELL, and a 15x speedup over the

Xeon processor, with only a third of the lines of code used for the CELL

processor’s implementation. Figure 4.4 shows a performance comparison

in frames per second (fps) of four different volumes on the three architec-

tures.

The important distinction between Kim’s doctoral thesis and this thesis

is the implementation and exploration of various unique ray casting tech-

niques to improve performance, visual quality, and investigation into vari-

ous volume rendering applications. Foremost, although an exact replication

37

Figure 4.4: Performance Comparison (CPU v.s. CELL v.s. CUDA) [5].

of testing conditions is impossible given the details from Kim’s thesis, the

volume renderer implemented in this thesis has been shown to achieve sig-

nificantly higher framerates and far greater speedup, which can be seen by

comparing Kim’s results with the results collected in chapter 6. The volume

renderer implemented in this thesis uses dynamic line segment allocation,

while Kim’s uses dynamic block allocation for partitioning threads which

this thesis declares inferior to line segment partitioning (see section 5.2).

Kim’s thesis makes no apparent investigations into visual quality enhance-

ments while this work examines the quality and performance aspects of both

supersampling and texture filtering. Finally, the work put forth in Kim’s the-

sis performs direct volume rendering on a single volume, while this volume

38

renderer developed in this thesis is capable of displaying 32 volumes si-

multaneously capable of rigid registration, can perform hypertexturing, and

implements stereoscopic anaglyphs.

4.5.2 CUDA SDK Volume Renderer

The NVIDIA CUDA SDK assists developers by providing them with a

number of example CUDA applications. Among these applications exists

a volume renderer which utilizes the ray casting algorithm. The source

code for this volume rendering system is available as part of the SDK, and

copyrighted by NVIDIA. As an important disclaimer, the volume renderer

contained in the CUDA SDK was examined as a resource which provided

example code for utilizing texture memory and pixel buffer objects. The

behavior and implementation of the volume renderer implemented in this

thesis was conceived exclusively by the author of this thesis document ex-

cept where noted and credited, and the volume rendering system developed

in this work is fundamentally unique from the volume renderer provided by

NVIDIA.

A large number of differences exist in both feature sets and implementa-

tion of the volume renderer developed in this work and the volume renderer

provided in the CUDA SDK; in fact the only common feature is the ability

to perform texture filtering, because 3D textures were used to store the vol-

ume data in both implementations. The volume renderer in the CUDA SDK

performs no early ray termination or supersampling, and supports strictly

39

one volume. None of the applications explored in this thesis are included in

the SDK’s volume renderer. The approach to implementation is also entirely

different, with the CUDA SDK placing all host functions in a single “.cpp”

file and all device functions in a single “.cu” file, while this thesis makes

significant effort to structure source code in a nearly object oriented fash-

ion. The SDK’s renderer does not make use of global memory, or contain a

world structure to define the scene. Finally, the CUDA SDK is not particu-

larly extensible, making it difficult or clumsy to add support for applications

such as multiple volume rendering or anaglyphs. The volume renderer im-

plemented in this work addresses and overcomes these issues by focusing

on the thesis goals: completion of an extensible and portable framework ca-

pable of interactive rendering while investigating a number of performance

and image quality enhancements, as well as exploring potential applications

of direct volume rendering.

40

Chapter 5

Implementation and Features

In order to achieve the stated goals of high quality interactive volume ren-

dering, a number of key techniques and optimizations were implemented.

Along with these techniques, a framework was constructed allowing simul-

taneous rendering of multiple volumes, and a number of unique example

application of volume rendering were developed, including the rendering of

multiple volumes, hypertexturing, and stereoscopic anaglyphs. This chapter

discusses each of these features in detail, and explains how they contribute

to the thesis objectives.

5.1 Volume Rendering Framework

Due to the complexity of describing a scene consisting of multiple objects

in 3D space (as well as an associated camera and view plane), a volume ren-

dering framework was implemented. This framework simplifies the scene

description and makes it easily modifiable and interchangeable by placing

the necessary variables in a single build function, essentially a script defin-

ing the scene. The initialization phase of the program invokes the build

41

function, which populates the “world” structure; the primary data structure

containing all necessary information about the scene to be rendered. For

more information on the world structure, please see section 5.4.

The volume rendering program is separated into nearly object-oriented

code. As of CUDA version 2.2, C++ style objects are not supported. How-

ever the various structures (camera, volume, world, etc.) and the functions

related to these structures are separated into their own source files. This

particular feat was difficult to accomplish due to errors in resolving symbols

between the gcc/g++ and nvcc compilers. Duplicate symbol errors are com-

mon, and CUDA does not have an elegant way to handle multiple source

files organized in this fashion; in the example SDK, many of the projects

have CUDA source code directly including other CUDA source code. De-

spite these issues, the compartmentalizing of this code, and the use of type

defined ‘objects’ (header files corresponding to the objects define the struc-

ture of the object) potentially allow the structures to be replaced with true

objects; in the event that objects are supported by the CUDA compiler.

A more general but important aspect of the rendering system is accessi-

bility and compatibility. Special care was taken to write code that was capa-

ble of compiling and running correctly under a variety of different operating

systems and hardware. The renderer has been programed to allow interac-

tive frame rates on desktop systems as well as laptop systems with CUDA

capable graphics chips. The renderer was developed and tuned on a laptop

42

to ensure that a laptop was capable of producing the bare minimum process-

ing power required, bringing the utilization of this visualization technology

further away from a dedicated high performance computing environment

and onto a mobil platform. The renderer has also been programmed to com-

pile under a variety of different compilers for different operating systems

in an attempt to produce a highly cross-platform system. The renderer has

been compiled and tested to function correctly under 32 and 64 bit versions

of Windows XP, Windows Vista and Mac OS X. Multiple projects which

target the same source code have been maintained to enable building across

these various platforms; a makefile exists for Mac OS X and a Visual Studio

2005 project exists for the Windows platform.

5.2 Load Balancing

Whenever an application is parallelized, load balancing must be addressed

to ensure the maximum utilization of the available compute nodes. Volume

rendering, ray tracing, and other rendering systems which utilize ray casting

are parallel on the ray level. Assuming that one primary ray corresponds to

one pixel in the rendered scene, then the smallest parallelizable block in

the workload is the computation of that pixel. Some pixels take longer to

compute than others; in ray tracing, the number of rays spawned from the

primary ray increase the amount of work to perform for each pixel, and with

volume rendering, the distance a ray must march through a volume before

exiting the volume (or becoming opaque and terminating early) determines

43

the amount of work to perform before accumulating a color for the pixel.

Research was conducted to determine the optimal partitioning of work

for a ray tracing application on an MPI system. Because the ray casting

algorithm is the algorithm being parallelized, and the ray tracing/marching

is performed sequentially for each primary ray, the optimal partitioning for

ray tracing is the same as the optimal partitioning for ray marching. Fig-

ure 5.1 shows an example of type of ray traced scene rendered to analyze

partitioning performance.

Figure 5.1: Example of a ray traced scene used to collect partitioning performance statis-
tics.

44

In the CUDA programming paradigm, one ray maps to one thread, and

given a scenario with no supersampling, one ray maps to one pixel. If a

supersampling of four is chosen, then four rays map to a pixel. These rays

can be computed independently and partitioned based on their correspond-

ing pixel in the scene. Three static and two dynamic partitioning methods

were implemented and analyzed to determine the optimal partitioning of

rays within a scene. Figure 5.2 shows the partitioning methods.

A frame of the scene cannot be rendered until every thread has com-

pleted. Block partitioning inherently does a poor job of partitioning the

work in a scene because the majority of the complexity in a scene may ex-

ist in one of the block partitions, requiring every thread in that partition to

execute complex work, while other partitions have little work to do. In a

ray casted scene, the threads of greater complexity are most often clustered

together, where a particular object to be drawn exists. Row partitioning is

the second best option, where the rows are more likely to equally divide the

work to be done evenly among the partitions. However, cyclic partitioning

achieves the best performance, where the complex work (the object or vol-

ume in the scene) is most likely to be evenly divided among the partitions.

Figure 5.3 shows that cyclic partitioning performs the best in the static par-

titioning scenarios.

45

Figure 5.2: Static and Dynamic Thread Partitioning Methods.

46

Figure 5.3: Performance of Static and Dynamic Partitioning Methods.

There is a notion of static and dynamic partitioning. Static partitioning

statically divides the amount of work to be performed among all available

processing elements at once and waits for the results. Dynamic partition-

ing divides the work to be performed into batches of a particular “grain

size,” and issues the corresponding work to the next available processing

47

node until all the computations are performed. Dynamic partitioning gener-

ally offers greater performance than static partitioning, providing the cost of

communication among processing nodes is mitigated. This is further sup-

ported by the experimentation using MPI, where both static and dynamic

partitioning algorithms were implemented. Figure 5.3 shows that dynamic

partitioning performs slightly better than the best static partitioning method,

and furthermore that line segment partitioning (essentially cyclic partition-

ing with a certain grain size) performs the best of all partitioning methods.

CUDA operates by dynamically dispatching thread blocks to available

multiprocessors. Assuming there are 64 threads per block, then the grain

size is 64 elements. There is no sense of static partitioning in CUDA because

the number of available multiprocessors on a device cannot be known at

compile time. The volume rendering application partitions threads within

a thread block as a line segment to be rendered in a scene, resulting in the

best partitioning method investigated. Figure 5.4 illustrates exactly how the

threads and thread blocks are allocated to render a frame. The dimensions

of the rendered frame are 640x480, and there are 64 threads per block. The

pixels are colored from black to blue according to their thread ID within a

thread block, and from black to red according to their block ID within a grid.

There are ten distinct columns in the figure because 64 threads are evenly

divided ten times into the horizontal resolution of 640. This figure shows

that a line segment of grain size 64 is used, and dynamically distributed in

the form of thread blocks to available multiprocessors.

48

Figure 5.4: Actual partitioning of threads in the volume renderer. The blue channel is
increased based on the thread ID within a block, and the red channel is increased based on
the block ID within a grid. This shows dynamic partitioning of line segments of a grain
size equal to the threads per block; in this case, 64.

The last variable to adjust regarding load balancing is the number of

threads per block (or essentially the grain size). However, altering this num-

ber may be misleading because it does not simply alter the grain size, but

it also alters the number of blocks which can fit on a multiprocessor, and

therefore the number of available multiprocessing elements. This is because

49

there is a certain amount of memory required to fit a thread block on a mul-

tiprocessor, and in this particular application, the available multiprocessor

memory is the limiting factor in the number of thread blocks which may

be simultaneously assigned to a multiprocessor. For this reason, the effects

of the adjustment of this parameter must be examined experimentally. The

results of adjusting this parameter can be seen in table 6.3. NVIDIA recom-

mends a multiple of 64 threads per block for optimal performance, which

is further validated by these performance results. To properly balance the

multiprocessor occupancy and the distribution of work among the systems

tested, 64 threads per block was chosen as a default value for the volume

renderer. Further information can be found in section 5.3.

5.3 CUDA Multiprocessor Occupancy

Multiprocessor occupancy is defined as the ratio of the number of active

warps on a multiprocessor to the maximum number of active warps. In

other words, occupancy describes the ratio of the actual number of simul-

taneous computations on a multiprocessor to the maximum number of si-

multaneous computations. NVIDIA provides a “CUDA Occupancy Calcu-

lator” spreadsheet to determine the occupancy of a graphics device based

upon compute capability, threads per block, registers per thread and shared

memory per block. Significant effort was placed in finding the optimal al-

location of resources on a variety of CUDA capable systems. Considering

the various CUDA compute capabilities, the volume renderer was designed

50

with portability as a priority, and tailored to run on compute model 1.0 as a

minimum specification. Both register usage and thread partitioning are ad-

dressed. however the volume renderer does not make use of shared memory.

Although shared memory exhibits excellent performance characteristics, all

of the necessary variables and data in the volume renderer exist in memory

locations capable of similar performance, sometimes via caching. There-

fore, usage of shared memory was not warranted, and hence this variable is

not considered in the investigation of multiprocessor occupancy.

CUDA has a notion of register usage within a multiprocessor. The com-

plexity of calculations within a device function contribute to the register

usage, however the exact method of calculation of registers used is un-

known. The volume renderer uses a very large number of registers, approx-

imately 46 registers for the rendering kernel possibly varying slightly based

on settings such as ray marching order, etc.The number of registers used per

thread directly contributes to the potential occupancy of the graphics device.

Figure 6.2 (top left) shows a compute capability 1.1 device using 46 regis-

ters and 64 threads per block. The occupancy of the device is only 17%, and

limited to 2 blocks per multiprocessor due to the number of registers in use.

It is possible to limit the number of registers used per thread during com-

pile time. The remaining registers are offloaded into “local memory”, which

is more accurately described as private memory located in the same space

51

as global memory. This memory has drastically slower performance charac-

teristics than registers, however the resulting increased occupancy can out-

weigh the change in memory performance. Figure 6.2 (top right) shows

the occupancy of a compute capability 1.1 device using 32 registers and 64

threads per block. The registers can be limited further, but the increased

occupancy will no longer overcome the degraded memory performance due

to the increased use of local memory. This was determined experimentally.

Table 6.2 shows the results of varying the the register usage.

Devices with compute capability 1.3 have twice the number of registers

at their disposal. Therefore, different performance trends exist for these de-

vices. However, because devices with compute capability 1.0 were chosen

as a minimum system requirement, the register usage was selected using

a compute capability 1.1 device (with performance identical performance

characteristics to compute model 1.0) and kept consistent across systems.

Figure 6.3 shows the effects of varying the register usage on a device with

compute model 1.3. The difference in compute models shows little devi-

ation in the optimal register usage, with 32 registers per thread achieving

maximum performance.

Another major factor in the device occupancy is the number of threads

per block. As discussed in section 5.2, the number of threads per block is

also the grain size of the partitioned threads. Because several factors are

being varied by changing the number of threads per block, the optimal per-

formance must be determined experimentally. Table 6.3 shows the results

52

of varying the number of threads per block.

5.4 Constant Memory and the World Structure

The world structure is the primary data structure containing all necessary

information about the scene to be rendered. The world structure may be

altered between frames but never during a frame. For example, using the

mouse to rotate or translate the object will ultimately update the world’s

camera. However, the world structure is guaranteed not to change within a

frame. This behavior can be exploited in CUDA. Because the world struc-

ture remains constant during a frame, the render kernel handles one discrete

frame at a time and all threads use the same world in their computations, the

world can be placed in constant memory.

The benefit of constant memory is that it frees up memory from each

multiprocessing element, and after the initial cache miss, the cost of read-

ing from constant cache is the same as the cost of reading from a register,

provided that all the threads in the executing half-warp are reading from the

same location in constant memory. In the volume renderer, all threads which

follow the same branch will access the same address in constant memory.

5.5 Texture Memory, Volumes and Filtering

Although a ray casting approach is used to render volumes, the volumes are

still stored in texture memory. This is because the largest available memory

53

space in CUDA is the memory space containing global memory and texture

memory, which is similar to main system memory on traditional comput-

ers. Global memory is not cached; however, texture memory exploits 2D

spatial locality by caching an element in texture memory along with the ele-

ments “around” that memory location. The volume renderer stores volumes

in texture memory for both its size (allowing larger volumes to be rendered

depending on the specifications of the graphics device), and its caching ca-

pabilities.

An additional advantage to using texture memory to store volumes is

the ability to filter the data when reading from the texture. It is common in

modern video games to filter textures to enhance visual quality. The filtering

provides a smoothing effect to the data contained in the texture. CUDA

provides two filtering modes: a point filter which returns the closest texel

to the coordinate requested in texture memory, and a linear filter which is

a linear interpolation of the several nearest texels to the texture coordinate.

The volume renderer uses a 3D texture to store the volumes, resulting in

the interpolation of 8 texels when reading a texture coordinate. Figure 5.5

illustrates the difference between these two filtering modes. Clearly, the

linear filter provides a much higher quality image at little to no performance

hit for the examined volumes (32x32x32 voxels).

54

Figure 5.5: An image of a 32x32x32 hypertexture rendered using point filtering (left) and
linear filtering (right).

5.6 Early Ray Termination

Early ray termination is a technique used to boost performance by limiting

the amount of work to be done for each ray. The idea is that as a ray marches

through a volume accumulating density/opacity, eventually the accumulated

density becomes so great that the remainder of the volume intersected by the

ray will make no significant impact on the resulting color of the pixel. This

threshold allows the ray to be terminated early. This technique obviously

requires front to back ray marching to be beneficial, as the front voxel data

has greater bearing on the resulting image than the back voxel data. Figure

5.7 is pseudocode for accumulating color by marching front to back. Figure

5.6 is pseudocode for the alternative method of marching back to front.

55

For each step through the volume:

sum = (1 - sum.alpha) * volume.density * color + sum;

return sum;

Figure 5.6: Pseudocode used to accumulate color by ray marching through a volume from
front to back.

For each step through the volume:

sum = lerp(sum, color, color.alpha * volume.density);

return sum;

Figure 5.7: Pseudocode used to accumulate color by ray marching through a volume from
back to front.

The volume renderer was implemented using both front to back and back

to front rendering techniques. It is possible to select front to back or back to

front rendering during compile time. When rendering from front to back, it

is possible to specify a density threshold value at compile time, which will

determine when to terminate a ray. Figure 5.8 shows the difference between

marching back to front (top left), front to back without early ray termination

(top right), with early ray termination with a threshold of 0.5 (bottom left)

and early ray termination with a threshold of 0.95 (bottom right). It can be

seen that marching front to back achieves a different visual representation

than marching back to front. The rendering with a ray termination threshold

of 0.5 is much darker and has a lower level of detail than without early ray

termination, however shows a significant performance gain (approximately

a 60% speedup). The rendering with a ray termination threshold of 0.95 is

nearly indistinguishable from the rendering without early ray termination,

56

and manages a small performance increase of approximately 6%.

Figure 5.8: Four images showing a hypertexture rendered in back to front order (top left),
front to back order (top right), front to back order with an early ray termination threshold
of 0.5 (bottom left) and front to back order with an early ray termination threshold of 0.95
(bottom right).

5.7 Supersampling

Supersampling, or oversampling, is a common visual quality enhancement

used to reduce aliasing in a rendering. It is often used in ray tracing to

57

reduce “jaggies” that appear on edge of objects, or on sharp contrast bound-

aries. If only one ray is fired per pixel, then that ray will either intersect with

a particular object in the scene or it will not, resulting in a sharp jagged look

along the edge of an object where some pixels strictly represent that object

and the rest do not. Supersampling is a technique where multiple rays are

fired per pixel, and their resulting color is averaged together. The result is a

smoother look on sharp contrast boundaries, where if one pixel lies exactly

on a boundary, the rays will average to a color between the two bounded

colors. In the volume renderer, supersampling was implemented by simply

dividing a pixel into equal parts with rays cast for each sub pixel, and aver-

aging the resulting colors from each ray for the final pixel value. Figure 5.10

shows the pseudocode for supersampling. Figure 5.9 shows the effects of

an image without supersampling (left) and with 16x supersampling (right)

for both point filter mode (top) and linear filter mode (bottom). Although

supersampling is a proven enhancement for other ray casting systems such

as ray tracing, volume rendering shows no noticable quality enhancement,

likely because supersampling softens edges of sharp contrast, which don’t

normally appear in volume renderings.

58

Figure 5.9: Four images showing a simulated Buckyball rendered using point filtering
with no supersampling (top left), point filtering with 16x supersampling (top right), linear
filtering with no supersampling (bottom left) and linear filtering with 16x supersampling
(bottom right).

59

int n = (int)sqrt((float)num_samples);

for (int p = 0; p < n; p++) // up pixel

for (int q = 0; q < n; q++) // across pixel

pp.x = pixel_size * (x - 0.5 * hres + (q + 0.5) / n);

pp.y = pixel_size * (y - 0.5 * vres + (p + 0.5) / n);

ray.d = get_direction(pp);

pixel_color += trace_ray(ray);

pixel_color /= num_samples;

return pixel_color;

Figure 5.10: Pseudocode for supersampling.

5.8 Multiple Volume Rendering

One of the most novel and unconventional aspects of the volume renderer

developed in this thesis is the ability to render multiple volumes simultane-

ously. The intention is to further research into potential for volume render-

ing systems to be used in more popular applications such as simulations and

video games. Figure 5.11 shows six volumes rendered simultaneously; each

with a different voxel resolution, placement, and z extent.

The rendering of multiple volumes simultaneously was taken into careful

consideration when designing the volume renderer, and the rendering frame-

work reflects this. As shown in figure 5.11, it is possible to specify a num-

ber of different volumes, each of which are maintain their own independent

voxel resolution. For example, the protein molecule is 64x64x64 voxels,

the engine block is 256x256x256 voxels, the orange is 256x256x62 vox-

els, and so on. There is also the notion of a dimension’s extent, or the “true

60

Figure 5.11: An image showing six volumes rendered simultaneously. From left to right,
top to bottom they are a protein molecule, an engine block a hypertexture, an orange, a
monkey’s skill and a frog.

dimensions” of a volume. This is essentially a ratio describing the voxel res-

olution in a particular dimension, and the actual distance that dimension is

intended to represent. Medical imaging systems typically operate by obtain-

ing “slices” of a volume at a time; however the distance represented by the

depth of a slize (z axis) is different than the distance represented by a pixel

within that slice (x and y axis). The rendering system is capable of dealing

with this difference as well: for instance, the CT scan of the monkey’s head

61

is 256x256x62 voxels with an extent ratio of 1:1:3. This indicates that the

62 slices in the z dimension represents the same physical distance as 186

(62x3) pixels in the x or y dimension.

Each volume is described using a volume structure which contains the

metadata indicating how to position and render the volume, and the raw

volume data stored in texture memory. An unfortunate limitation of CUDA

requires the programmer to access volumes by variable name and not as part

of an array, requiring the number of textures used to be known at compile

time, rather than runtime. This requires a hard-set limit on the number of

volumes represented in the scene; similar to how openGL limits the number

of lights in a scene to only 8. The volume renderer has a set maximum of 32

specifiable volumes. It is trivial to increase this number at compile time; but

32 was determined to be a sufficient proof of concept. Figure 5.12 shows

32 separate buckyball volumes being displayed simultaneously. The ability

to perform multiple volume rendering was one of the greater difficulties

encountered while developing the volume renderer. Due to limitations in

CUDA, there can be no references or pointers to textures. Therefore, an

array of textures may not be used to simply index into a particular texture

based on a numerical ID. The solution to this was to generate a several

hundred line switch statement in the code to perform the necessary actions

for each volume, resulting in very verbose source code. See section 7.4 for

more information on the difficulties encountered with texture memory.

62

Figure 5.12: An image showing 32 individual volumes, the current maximum number of
displayable volumes in the renderer.

Volumes may also also intersect with one another. One of the major bene-

fits of volume rendering is the ability to visualize the interior of an object, as

opposed to strictly visualizing exterior which is common for nearly all other

rendering systems. In conjunction with the opacity associated with volume

rendering, it is possible to to nest two semi-opaque volumes to achieve an

entirely new visual representation. Medical imaging for example is greatly

63

Figure 5.13: An image showing an MRI scan (left) and a CT scan (right) of a monkey’s
head. The density factor of the MRI scan is one fifth the density factor of the CT scan.

enhanced by the ability to overlay scans of different characteristics to vi-

sually achieve a better understanding of the subject. The volume renderer

allows this by enabling quick rigid registration of volumes. Figure 5.13

shows an MRI (left) and a CT (right) of a monkey’s head. The MRI volume

has one fifth the density factor as the CT volume. Figure 5.14 shows the

MRI and CT volumes nested. The volume rendering framework provides

a density factor for each volume which helps highlight the areas the user

wishes to stand out. In this case the bone structure of the monkey is slightly

64

more distinct than the tissue.

Figure 5.14: An image showing an MRI scan and the CT scan of a monkey’s head nested
together. The density factor of the MRI scan is one fifth the density factor of the CT scan
to highlight the results of the CT scan.

5.9 Hypertextures

Another novel contribution is the implementation of hypertexturing using

CUDA. Hypertextures are a concept propsed by Ken Perlin [11], and are a

way of producing objects with surfaces particularly difficult to define with

conventional polygonal meshes; such as gaseous or liquid objects like fire,

65

smoke and ice. While volume rendering is the traditional approach to dis-

playing hypertextures, this thesis is very likely the first attempt at rendering

these hypertextures using CUDA.

Figure 5.15: Two images showing the density modulation function of a hypertexture. The
image to the left was generated with voxel values between [0,1]. The image to the right
was generated using voxel values between [-0.5,0.5], and reinterpreted as unsigned values.

The hypertextures rendered are actually the density modulation functions

more commonly used to determine how to adjust the density or shape of an

existing or implicit object. Perlin noise, another invention of Ken Perlin, is

used to generate random but cohesive density values to generate a volume.

The Perlin noise is essentially computed on the host at runtime, loaded into

a texture, and rendered using the volume renderer running on the graph-

ics device. Figure 5.15 shows a hypertexture with densities between [0, 1]

(left), and a hypertexture without bounds checking with densities between

[-0.5, 0.5]. However the voxel data is interpreted as unsigned characters,

where negative numbers casted as unsigned values become interpreted as

66

large positive numbers. The hypertexture with bounds checking provides

a much smoother image, while the hypertexture without has sharp contrast

between dense areas, and the linear texture filtering results in the visually

interesting rainbow-colored lines.

5.10 Stereoscopic Anaglyph

An anaglyph is an image rendered from two different camera perspectives

with a red and cyan filter for the two perspectives. Wearing glasses with

a red lens over one eye and cyan lens in the other reveals a stereoscopic

image. The human brain interprets the difference of perspective provided

by the stereoscopic image as a three dimensional scene. Anaglyphs are

have been a novelty in media for many years, with a recent increase of “3D”

motion pictures coming to movie theaters.

As another novel application of volume rendering, this thesis incorpo-

rates the ability to view and interact with volumes rendered as an anaglyph.

This is performed by placing two cameras in a scene instead of one. Each

camera is responsible for rendering the scene from a different perspective,

and applying the red or cyan filter appropriately. The resulting color ob-

served by each camera is then accumulated to produce a final image. In the

volume renderer, each thread is responsible for casting a single ray from

both the red and the cyan cameras and accumulating the results. Figure 5.16

shows the pseudocode for anaglyph rendering. Figure 5.17 shows an engine

block rendered as an anaglyph.

67

For each pixel or sub-pixel

ray.o = camera.eye_center - stereo_separation;

temp_pixel_color = CYAN * trace_ray(ray);

ray.o = camera.eye_center + stereo_separation;

temp_pixel_color = RED * trace_ray(ray);

pixel_color += temp_pixel_color/2.0f;

return pixel_color;

Figure 5.16: Pseudocode for anaglyph rendering.

Figure 5.17: An image showing a stereoscopic anaglyph of an engine block. To properly
view the image, it must be reproduced in color, and the observer requires “3D glasses” with
red and cyan lenses.

68

Chapter 6

Performance Results

In the previous chapter, several volume rendering techniques implemented

in this thesis were examined, and require some metric of performance for

proper analysis. A number of factors affect the overall performance of the

volume renderer developed in this thesis. Many settings adjust multiple

variables simultaneously, requiring experimentation to determine optimal

behavior. This chapter visits each of these factors and how they contribute

to the performance of the volume renderer. All performance trials were run

at a resolution of 640 by 480, using back to front ray marching with no early

ray termination, linear texture filtering, 64 threads per block, 32 registers per

thread and no supersampling unless otherwise noted.

6.1 Sequential vs. CUDA Implementations

A primitive version of the volume renderer was implemented for Microsoft

Windows based systems for the purpose of performance comparison with a

sequential implementation. The primitive sequential volume renderer dif-

fers from the CUDA volume renderer in many ways. It does not perform

69

linear interpolation between the data points, allow for interaction with the

volume, or utilize a transfer function to assign color based on the sampled

density. Most significantly, it does not accumulate opacity while march-

ing through a cube, instead it simply accumulates density until a threshold

is reached, and if the threshold is reached, the gradient is computed and

returned. However, this is essentially the same behavior as early ray termi-

nation, and more significantly with a threshold far below a typical threshold

that would be chosen for early ray termination. Therefore, even in opti-

mal cases, the performance of the primitive sequential volume renderer is

significantly faster than a sequential implementation of the CUDA volume

renderer.

Figure 6.1: Renderings of a 32x32x32 hypertexture from the simple sequential volume
renderer (left) and the CUDA volume renderer (right).

70

Device Frames Per Second Speedup Over Sequential
Sequential Intel Q9550 1.5 1.0
CUDA NVIDIA GTX260 59.3 39.53

Table 6.1: A performance comparison in frames per second between the simple sequential
volume renderer and the CUDA volume renderer.

Figure 6.1 shows the visual difference between the two rendering sys-

tems implemented. The primitive volume renderer to the left renders a hy-

pertexture of the same resolution as the CUDA volume renderer to the right,

however the linear texture filtering provided by CUDA produces a signifi-

cantly more refined image. Table 6.1 shows that the CUDA volume renderer

implemented in this thesis is capable of rendering at a rate of approximately

60 frames per second, nearly a 40x increase over the sequential implemen-

tation, despite the biased workload in favor of the sequential renderer.

6.2 Register Usage

CUDA has a notion of multiprocessor occupancy, essentially the ratio of

work performed per multiprocesser versus the maximum potential work per-

formed per multiprocessor. Register usage is one of the primary factors that

determines this occupancy. It is possible to limit the number of registers

used per thread by offloading the excess data into local memory, which ex-

hibits significantly worse performance than registers. A balance between the

71

multiprocessor occupancy and the local memory usage must be experimen-

tally determined to achieve maximum performance. Figure 6.2 and figure

6.3 show the projected occupancy obtained from NVIDIA’s CUDA Occu-

pancy Calculator. A trend line of the occupancy is shown given the partic-

ular register usage. The actual multiprocessor occupancy is determined by

intersecting the number of threads per block (discussed in the next section)

along the x axis with the trend line in the graph. These two compute mod-

els were chosen because the devices used to collect the performance results

seen in this chapter are a 9600m GT (compute model 1.1) and a GTX260

(compute model 1.3). Table 6.2 shows the performance outcome of varying

register usage.

Device Compute Model Register Usage Frames Per Second
GeForce 9600m GT 1.1 46 13.2
GeForce 9600m GT 1.1 32 22.0
GeForce 9600m GT 1.1 24 13.2

GeForce GTX260 1.3 44 58.1
GeForce GTX260 1.3 32 59.3
GeForce GTX260 1.3 24 52.8

Table 6.2: A performance comparison in frames per second between devices of two differ-
ent compute models obtained by varying the register usage of each thread. The number of
threads per block remained a constant 64 threads.

72

Figure 6.2: Charts produced by the CUDA Occupancy Calculator showing occupancy by
varying the register usage for a compute model 1.1 device.

73

Figure 6.3: Charts produced by the CUDA Occupancy Calculator showing occupancy by
varying the register usage for a compute model 1.3 device.

6.3 Threads Per Block

Load balancing is a key performance aspect of parallel systems. Section 5.2

shows a number of methods examined for partitioning work, and concludes

that dynamic strip partitioning of threads is the ideal partitioning method.

In this case, dynamic partitioning is performed by CUDA, which dynami-

cally allocates a certain number of threads, known as a grain size, to execute

on the next available multiprocessor. This grain size is determined by the

74

number of threads per block. The number of threads per block is also one of

the primary factors used to determine multiprocessor occupancy. Because

there are a number of factors which affect the performance when varying

the number of threads per block, performance results were obtained experi-

mentally.

Device Compute Model Threads Per Block Frames Per Second
GeForce 9600m GT 1.1 32 12.3
GeForce 9600m GT 1.1 64 22.0
GeForce 9600m GT 1.1 96 15.5
GeForce 9600m GT 1.1 128 21.1
GeForce 9600m GT 1.1 160 12.4
GeForce GTX260 1.3 32 51.2
GeForce GTX260 1.3 64 59.8
GeForce GTX260 1.3 96 57.8
GeForce GTX260 1.3 128 59.9
GeForce GTX260 1.3 160 43.7

Table 6.3: A performance comparison in frames per second between devices of two differ-
ent compute models obtained by varying the threads per block. The register usage remained
a constant 32 registers.

Table 6.3 shows the performance trend when varying the number of

threads per block. The particular thread counts were chosen as a multi-

ple of warp size (32 threads), however NVIDIA recommends a multiple of

64 threads per block. The table validates this suggestion, showing relatively

little difference in performance between 64 and 128 threads per block. Fig-

ure 6.2 and figure 6.3 shown in the previous section illustrate a graph of

multiprocessor occupancy given 32 registers used per thread. The number

75

of threads per block shown in table 6.3 may be marked along the x-axis

of these figures to reveal the multiprocessor occupancy given a particular

number of threads per block.

6.4 Texture Filtering Modes

Texture memory is used to store the data to be visualized in the volume

rendering system; for both the capacity of texture memory and its spatial

caching policy. In addition to these performance considerations, texture

memory also allows filtering of the stored data when indexing into memory.

Figure 5.5 shows the visual results of the point and linear filtering methods.

The performance characteristics of these two filtering methods have been

collected in table 6.4. A visual comparison of these two filtering modes

show that linear average filtering provides a significantly greater quality im-

age. The results in this table show that there is virtually no difference in

performance between linear and point filtering, making linear filtering an

excellent choice for improving visual quality.

Device Filter Mode Frames Per Second
GeForce 9600m GT Point 21.9
GeForce 9600m GT Linear 22.0

GeForce GTX260 Point 59.7
GeForce GTX260 Linear 59.8

Table 6.4: A performance comparison in frames per second of point and linear texture
filtering modes, across different devices.

76

6.5 Early Ray Termination

Early ray termination is a common performance enhancement in volume

rendering systems, discussed in several academic papers and various re-

sources. Early ray termination reduces the amount of computation neces-

sary by terminating the ray marching algorithm once a particular threshold

has been reached. Varying this threshold potentially varies the amount of

computations to be performed. Because the threshold is compared to the

accumulated density/opacity of a particular volume, it is necessary to ex-

amine the affects of early ray termination on a variety of volumes. Table

6.5 and table 6.6 list the volume renderer’s performance for two different

volumes while varying the termination threshold. It is important to note

that early ray termination may only be performed when marching in front

to back order. The volume renderer implemented is capable of both front

to back and back to front marching; therefore the performance results of

back to front marching are also included here. The same set of tests were

performed for two different volumes; one exhibiting relatively low density,

and another exhibiting high density. The drastic difference in performance

confirms that early ray termination is volume dependent. Dense volumes

are capable of more than doubling their rendering speed with a reasonably

selected early ray termination threshold.

77

Figure 6.4: Images of the two models used for gathering performance results for early ray
termination. The images are of a Buckyball (left) and a Sphere distance field (right).

Device March Order Threshold Frames Per Second
GeForce 9600m GT B-to-F NA 22.0
GeForce 9600m GT F-to-B NA 22.6
GeForce 9600m GT F-to-B 0.95 22.4
GeForce 9600m GT F-to-B 0.9 22.3
GeForce 9600m GT F-to-B 0.85 22.7
GeForce 9600m GT F-to-B 0.8 22.7

GeForce GTX260 B-to-F NA 59.9
GeForce GTX260 F-to-B NA 59.9
GeForce GTX260 F-to-B 0.95 60.1
GeForce GTX260 F-to-B 0.9 60.4
GeForce GTX260 F-to-B 0.85 61.2
GeForce GTX260 F-to-B 0.8 60.1

Table 6.5: A performance comparison in frames per second of ray march order and early
ray termination, across different devices. F-to-B indicates front to back ordering, B-to-
F indicates back to front ordering, and a threshold of NA indicates early ray termination
was not enabled. The buckyball volume included in the NVIDIA SDK was used when
collecting data.

78

Device March Order Threshold Frames Per Second
GeForce 9600m GT B-to-F N/A 19.5
GeForce 9600m GT F-to-B N/A 21.2
GeForce 9600m GT F-to-B 0.95 39.4
GeForce 9600m GT F-to-B 0.9 44.3
GeForce 9600m GT F-to-B 0.85 47.7
GeForce 9600m GT F-to-B 0.8 50.7

GeForce GTX260 B-to-F N/A 54.6
GeForce GTX260 F-to-B N/A 59.9
GeForce GTX260 F-to-B 0.95 61.3
GeForce GTX260 F-to-B 0.9 60.8
GeForce GTX260 F-to-B 0.85 61.7
GeForce GTX260 F-to-B 0.8 60.6

Table 6.6: A performance comparison in frames per second of ray march order and early
ray termination, across different devices. F-to-B indicates front to back ordering, B-to-F
indicates back to front ordering, and a threshold of N/A indicates early ray termination was
not enabled. The sphere testing volume [13] was used when collecting data.

6.6 Supersampling

Supersampling is a visual quality technique commonly used in ray casting

systems. The implementation of supersampling in this thesis operates by

dividing each pixel in a frame into several sub pixels, and casts a ray for

each sub pixel, averaging the result of the sub pixels to assign a color. Be-

cause the number of rays casted directly represents the amount of work to

be performed by the rendering algorithm, it is necessary to take a look at the

performance aspects of supersampling. Table 6.7 lists the performance char-

acteristics of adjusting the degree of pixel segmentation, or in other words,

79

the number of rays casted to produce a complete frame. As to be expected,

16x supersampling generates 16 times the number of rays to be computed,

generating on the order of 16 times the amount of work to be performed,

and resulting in up to a 16x slowdown.

Device Supersampling Frames Per Second
GeForce 9600m GT 1x (none) 21.7
GeForce 9600m GT 4x 6.3
GeForce 9600m GT 16x 1.7

GeForce GTX260 1x (none) 59.9
GeForce GTX260 4x 28.1
GeForce GTX260 16x 9.5

Table 6.7: A performance comparison in frames per second of various degrees of super-
sampling across different devices.

6.7 Voxel Resolution

The volume renderer implemented in this thesis supports volume data sets

with varying voxel resolution. The higher the resolution, the greater the

memory requirements to store the volume data. It is also necessary to exam-

ine the speed of rendering volumes of varying resolution. Table 6.8 details

the framerate achieved when rendering a single volume of varying voxel di-

mensions. This table shows a linear correlation to the voxel resolution of

the rendered volume and the frames per second achieved.

80

Device Voxel Resolution Frames Per Second
GeForce 9600m GT 16x16x16 21.1
GeForce 9600m GT 32x32x32 21.0
GeForce 9600m GT 64x64x64 19.4
GeForce 9600m GT 128x128x128 13.0
GeForce 9600m GT 256x256x256 6.4
GeForce 9600m GT 512x512x512 N/A

GeForce GTX260 16x16x16 59.9
GeForce GTX260 32x32x32 58.1
GeForce GTX260 64x64x64 55.6
GeForce GTX260 128x128x128 48.5
GeForce GTX260 256x256x256 46.5
GeForce GTX260 512x512x512 36.4

Table 6.8: A performance comparison in frames per second of rendering volumes with
varying voxel resolutions across different devices. Hypertextures were generated with
varying voxel resolutions to collect the data. Note that a 512x512x512 volume could not
be rendered using the GeForce 9600m GT because it exceeds the memory capacity of the
device.

6.8 Number of Volumes

A unique feature of the volume renderer implemented in this thesis is the

ability to render multiple volumes. A varying number of volumes may be

arbitrarily placed in a scene, and can be overlapped performing volume reg-

istration. There are a number of applications for multiple volume rendering,

and it is reasonable to assume some applications would benefit from reg-

istered volume rendering, while others would benefit from discrete place-

ment of volumes within a scene. Table 6.9 and table 6.10 show the per-

formance when rendering a varying number of volumes, both in registered,

81

and discrete placed fashion. Both orientations exhibit a decline in rendering

with an increase in the number of volumes, however the frames per sec-

ond achieved with overlapping volumes is much lower than the frames per

second achieved with a side-by-side array of volumes.

Device Number of Volumes Frames Per Second
GeForce 9600m GT 1 21.1
GeForce 9600m GT 2 11.6
GeForce 9600m GT 4 5.8
GeForce 9600m GT 8 2.7
GeForce 9600m GT 16 1.4
GeForce 9600m GT 32 0.5

GeForce GTX260 1 59.9
GeForce GTX260 2 43.3
GeForce GTX260 4 29.4
GeForce GTX260 8 16.4
GeForce GTX260 16 7.7
GeForce GTX260 32 3.4

Table 6.9: A performance comparison in frames per second of rendering multiple volumes
different devices. The buckyball volume included in the NVIDIA SDK was used when
collecting data. Every volume is placed in the center of the scene, overlapping each other.

82

Device Number of Volumes Frames Per Second
GeForce 9600m GT 1 49.8
GeForce 9600m GT 2 40.4
GeForce 9600m GT 4 34.0
GeForce 9600m GT 8 25.4
GeForce 9600m GT 16 13.7
GeForce 9600m GT 32 6.5

GeForce GTX260 1 61.5
GeForce GTX260 2 61.3
GeForce GTX260 4 61.0
GeForce GTX260 8 60.2
GeForce GTX260 16 47.8
GeForce GTX260 32 30.2

Table 6.10: A performance comparison in frames per second of rendering multiple volumes
different devices. The buckyball volume included in the NVIDIA SDK was used when
collecting data. The volumes were placed from left to right, bottom to top in a 8x4 2D grid
configuration which can be seen in figure 5.12.

6.9 Anaglyph Results

Anaglyphs are stereoscopic images which allow a viewer to visualize a 2D

image in “3D” by providing each eye a different perspective of the same

scene. The volume renderer is capable of producing anaglyphs, rendering

the scene once with a red filter, and again with a cyan filter, and accumulat-

ing the two. In order to produce these images, two cameras must be used si-

multaneously to compute two different perspectives of the same scene. The

addition of a second camera effectively doubles the number of rays which

must be fired, requiring each thread to fire two rays instead of one. Table

83

6.11 lists the effect the increased workload for each thread has on perfor-

mance. By rendering an anaglyph, two cameras are placed in a scene with

a perspective taken from each camera, doubling the number of rays casted

through a scene. The table shows that rendering anaglyphs results in a 25%

to 50% reduction in frames per second.

Device Render Method Frames Per Second
GeForce 9600m GT Normal 6.5
GeForce 9600m GT Anaglyph 3.4

GeForce GTX260 Normal 41.5
GeForce GTX260 Anaglyph 30.2

Table 6.11: A performance comparison in frames per second of normal vs. anaglyph ren-
dering methods across different devices. The engine volume seen in figure 5.17 was used
to collect results.

84

Chapter 7

Analysis

This chapter individually analyzes the effectiveness and efficiency of var-

ious implementation choices, rendering techniques and features, and their

performance characteristics discussed in previous chapters.

7.1 CUDA vs. Sequential Performance

CUDA was selected as a platform for implementing the volume renderer

because of it’s tremendous performance advantages for embarrassingly par-

allel applications. It is natural to compare the performance of this platform

with a baseline sequential system. Although the exact volume rendering

system has not been duplicated on a sequential system, a more primitive ver-

sion of the volume renderer does compile for a Microsoft Windows based

system. The primitive sequential volume renderer differs from the CUDA

volume renderer in many ways. It does not perform linear interpolation be-

tween the data points, allow for interaction with the volume, or utilize a

transfer function to assign color based on the sampled density. Most sig-

nificantly, it does not accumulate opacity while marching through a cube,

85

instead it simply accumulates density until a threshold is reached, and if the

threshold is reached, the gradient is computed and returned. However, this

is essentially the same behavior as early ray termination, and more signifi-

cantly with a threshold far below a typical threshold that would be chosen

for early ray termination. Therefore, even in optimal cases, the performance

of the primitive sequential volume renderer is significantly faster than a se-

quential port of the CUDA volume renderer.

Despite the clearly reduced workload of the sequential application, the

volume renderer parallelized using CUDA achieves extremely impressive

speedup. On a test system using an Intel Core 2 Quad 9550 for the sequen-

tial implementation, and an NVIDIA GTX260 (192 core) for the CUDA im-

plementation, a speedup of approximately 40x was achieved. Furthermore,

the CUDA implementation was capable of achieving far better graphical

quality at real time performance of approximately 60 frames per second.

Figure 6.1 shows a sample of the rendered hypertexture that the sequential

application produces (left) and the rendered hypertexture using the CUDA

implementation (right). These two scenes were used to obtain the perfor-

mance results seen in table 6.1.

7.2 Price vs. Performance

One major advantage of general-purpose computing on graphics processing

units or GPGPU is the price-performance ratio. Figure 1.1 shows a compar-

ison in raw compute power between Intel-based CPUs and NVIDIA GPUs.

86

This graph, provided by NVIDIA, claims modern NVIDIA GPUs has a

GFLOP/s peak approximately 10x greater than Intel CPUs. However, the

mid to high range products offered by Intel may be up to twice as expensive

as the products offered by NVIDIA. As discussed in section 7.1, the CUDA

implementation is capable of achieving a 40x or greater speedup over con-

ventional processors. As of May 2009, the Intel Q9550 used for this per-

formance analysis costs approximately $280, while the NVIDIA GTX260

costs approximately $160. Table 7.1 shows that for this specific volume

rendering application, GPUs are capable of delivering 69 times the frames

per dollar of CPUs. Although the sequential implementation of the volume

renderer is not identical to the CUDA implementation, it is extremely un-

likely that an identical implementation would yield increased performance

on the sequential system. However, the sequential implementation does not

explore other capabilities of modern CPUs, which are trending toward many

core solutions capable of parallel processing.

Device Approx. Cost Frames Per Second Frames Per Dollar
Intel Q9550 $280 1.5 0.005357
NVIDIA GTX260 $160 59.3 0.370625

Table 7.1: A price-performance comparison between a primitive sequential volume render-
ing implementation running on a CPU and the CUDA volume rendering implementation
running on a GPU.

87

7.3 CUDA Object Orientation Difficulties

As of CUDA version 2.2, C++-style object oriented code is not supported.

This requires the CUDA source code to be written in the style of standard

C. However, for maintenance and future development reasons, the volume

renderer was written using typed structures instead of objects, and code re-

lating to that “class” of objects is encapsulated in a file named after that

class. However, CUDA does not support the linking of device code from

multiple files, and generally requires all the functions used by a kernel to

exist in the same file. The source provided with the CUDA SDK sidesteps

this issue by directly including other CUDA source code to pull all the nec-

essary device functions into one file. This is of course extremely inelegant

and problematic, and duplicate symbol errors are common. Specifically,

the CUDA compiler is capable of resolving duplicate device functions, but

not duplicate host functions; so host functions should generally be kept in a

“.cpp” file (compiled by gcc/g++) while device functions are kept in a “.cu”

file (compiled by NVIDIA’s nvcc). However, due to the limitations of in-

teracting with texture memory (see section 7.4), host functions are required

in the file “Volume.cu” in order to initialize and allocate texture memory.

In order to avoid duplicate symbol errors, the code checks if the files which

include “Volume.cu” are defined; if they are defined then the host functions

are removed by the precompiler. This unfortunately requires knowledge of

which files include “Volume.cu”, which is not ideal, but unavoidable.

88

7.4 CUDA Texture Memory Difficulties

Volume data is stored in texture memory, which is initialized at runtime.

The volume renderer supports the use of multiple volumes, which can be

specified using a script file read during runtime. However, CUDA does not

support arrays or pointers to textures, and instead requires distinct variables

to be defined for each texture in use. Functions may be invoked using these

variables, but pointers or references to these texture variables may not be

used. This requires the potential number of volumes and texture variables to

be defined at compile time. The lack of support for pointers to textures also

means that there cannot be an array of texture memory variables. Therefore,

in order to select the correct texture associated with a particular volume in

the volume array, each volume structure contains an ID which is used to

index into a large switch statement when reading or writing a texture. This

is likely one of the most verbose approaches to selecting a variable based on

a number, but it is one of the only remaining options given the restrictions

surrounding texture memory.

7.5 Occupancy and Partitioning Analysis

Several variables factor into the occupancy of the multiprocessors in CUDA.

Threads per block, registers per thread and shared memory per block all de-

termine the multiprocessor occupancy for a particular device, and different

compute models result in a different occupancy trend for these variables.

89

Furthermore, the adjustment of the number of threads per block directly af-

fects the distribution of work among the multiprocessors by changing the

grain size. To determine the optimal settings for these values, a series of

performance trials were conducted. Shared memory was not used in the

volume renderer, so the affect of varying the threads per block and registers

per thread were individually examined.

The number of registers used per thread was varied to determine the

highest performing setting. The number of registers used is determined

by a number of factors regarding the complexity of the computations in

the program, however the exact calculation of the necessary registers is un-

known. CUDA provides a way to limit the number of registers used per

thread by setting the -maxrregcount compiler flag. This reduces the number

of registers required by offloading the data from excess registers into “lo-

cal memory”. Local memory has the same performance characteristics as

global memory, which are relatively poor. However, the reduction of regis-

ters per thread allows greater multiprocessor occupancy, which potentially

overcomes the disadvantage of using local memory. The CUDA occupancy

calculator was used to graph the potential benifits of altering the register

usage, as seen in figure 6.2 and figure 6.3.

A number of renderings were then performed to collect the actual frames

per second achieved by varying the register usage. Table 6.2 shows the

results of these trials. The table shows the optimal number of registers per

thread is 32 registers. Although 32 registers per thread does not result in the

90

maximum occupancy possible, it is the optimal balance of multiprocessor

occupancy and memory performance.

The number of threads per block were then adjusted to determine the

optimal settings. Similar to the tradeoffs inherent with register usage, the

number of threads per block must balance the benefits of multiprocessor

occupancy against a potentially poor grain size for load balancing. The

graphs in figure 6.2 and figure 6.3 show the multiprocessor occupancy with

the threads per block as the x-axis. These figures help choose the number

of threads per block to maximize occupancy. It is important to note that

NVIDIA strongly suggests that the number of threads per block is a multiple

of 64.

Again, a number of renderings were performed to determine the opti-

mal threads per block. All threads per block values chosen to test with

are a multiple of 64. After collecting the data, it was determined that 64

and 128 threads per block both strike an optimal balance between grain

size and multiprocessor occupancy. It was determined that both 64 and 128

threads per block achieve nearly identical performance making either value

was acceptable, so 64 threads per block was selected for the remainder of

the performance characterizations in this document.

7.6 Texture Filtering Analysis

CUDA capable devices have several memory partitions, each with unique

performance and capacity characteristics. Texture memory was used to store

91

a 3D texture of the volume data on the device due to texture memory’s

large capacity (on the order of hundreds of megabytes on most devices) and

caching performance (exploiting 2D spatial locality). Texture memory has

the additional benefit of texture filtering, a feature which drastically affects

the visual quality of a volume rendering. The filtering modes take affect

when indexing into texture memory for reading. Point filtering will return

the nearest texel value, resulting in a blocky image. Linear filtering will

perform a linear interpolation between the nearest texels (the 8 nearest for

a 3D texture), resulting in a much smoother image. Figure 5.5 shows two

renderings, with point filtering on the left and linear filtering on the right. It

is apparent that linear filtering drastically improves visual quality.

Table 6.4 shows the performance results of the two texture filtering modes

across two different test systems. In both cases, the point filtering and lin-

ear filtering exhibit nearly identical performance. This makes linear texture

filtering an extremely attractive enhancement with virtually no performance

drop for significantly higher quality renderings.

7.7 Early Ray Termination Analysis

Early ray termination is a standard performance enhancement for volume

rendering systems. It allows the ray marching algorithm to return early if

the accumulated density/opacity has reached a set threshold, resulting in

fewer computations. Figure 5.8 shows a number of renderings for compari-

son with early ray termination using various thresholds. When parallelized

92

using CUDA, early ray termination must overcome the overhead of execut-

ing inside a warp. Because the rays are partitioned into threads, and several

threads are executed in a batch (known a as a “warp”) on a multiprocessor,

the multiprocessor will still be consumed until all threads have finished pro-

cessing. There is no foreseeable way to address this load balancing problem

because the execution of threads happens at a hardware level, out of the

programmers control.

The the speedup achieved by the early ray termination algorithm is di-

rectly dependent on the volume being rendered. If the volume quickly accu-

mulates the threshold value, there will likely be a greater performance ben-

efit. Figure 6.4 shows the two volumes used to collect performance results

for early ray termination. The Buckyball (left) is significantly less dense

than the sphere distance field (right). Table 6.5 shows the result of render-

ing the Buckyball with varies threshold densities, while table 6.6 performs

the same trials with the spherical distance volume.

While the Buckyball exhibits little to no speedup with the use of early ray

termination, the significantly more dense spherical distance volume achieves

as great as a 2.6x speedup in rendering time for the examined thresholds.

This demonstrates that early ray termination is a significant performance

enhancement when visualizing the appropriate volumes.

93

7.8 Supersampling Analysis

Supersampling was implemented in the volume renderer by simply dividing

a pixel into equal parts with rays cast for each sub pixel, and averaging the

resulting colors from each ray for the final pixel value. However, this en-

hancement did not provide as noticeable a quality improvement as it does

with other applications such as ray tracing. This is because of the nature

of the content in the scene. Ray tracing has a distinctive, crisp, super-real

look that has noticeable jaggies at contrast boundaries. However, volume

renderings have a significant amount of opacity, and commonly the voxel

resolution of the objects rendered is significantly less than the pixel resolu-

tion of the screen used to view them, making the jaggies far less noticeable

in comparison. Volume renderings which incorporate an illumination model

such as Phong illumination, which results in areas of sharp contrast, may

achieve a more noticeable improvement to the visual quality of the image.

Supersampling also drastically increases the amount of work to be done. It

is traditionally reserved for high quality still images, and not for interactive

applications. Figure 5.9 shows the effects of an image without supersam-

pling (left) and with 16x supersampling (right) for both point filter mode

(top) and linear filter mode (bottom).

As can be seen in table 6.7, supersampling requires a significant amount

of additional computation. By performing 16x supersampling, the number

of primary rays casted (and therefore number of threads to be computed)

94

increases by a factor of sixteen. It is to be expected that the rendering of

a frame of a 16x supersampled image may take as much as sixteen times

as long as the same frame without supersampling. The performance results

show a performance drop of between roughly 6x and 13x. It is clear that

the performance disadvantage likely outweighs the improvement in visual

quality (if any) when attempting interactive frame rates, especially when

compared to the performance/quality ratio of linear filtering.

7.9 Analysis of Volume Characteristics

The volumes used by the volume renderer are defined by voxel data, which

typically represent density. Volumes have a voxel resolution similar to the

pixel resolution of a common television screen or computer monitor, but in

three dimensions. Results were collected on the frames per second achieved

when rendering volumes with increasingly large voxel resolutions. Hyper-

textures such as those seen in figure 5.15 were used to collect the perfor-

mance results. Hypertextures are particularly useful for this application as

they can be used to generate the same general volume with increasing reso-

lution. Table 6.8 shows the performance of the volume renderer as the voxel

dimensions of the volume increase. Note that GeForce 9600m GT has no

data collected for a 512x512x512 volume, because the memory required to

store the volume (134,217,728 bytes or 128 megabytes) exceeded the ca-

pacity of the texture memory. The results have been graphed in figure 7.1

for analysis.

95

Figure 7.1: A graph of the results showing how performance scales with the voxel resolu-
tion of the rendered volume.

Figure 7.1 shows that the voxel resolution of a volume has significant

bearing on the frame rate of the volume renderer. It is shown that the frame

rate diminishes linearly with respect to the volume’s resolution, though the

exact affect the resolution has on performance is unique to the hardware

device used.

One of the unique features of the volume renderer implemented in this

work is the ability to simultaneously render multiple volumes. These vol-

umes can be arbitrarily positioned within the world, and may potentially

96

overlap. Overlapping volumes essentially performs a kind of rigid volume

registration. This can be particularly useful for medical imaging applica-

tions. For example, a doctor may wish to view a combined representation

of an MRI and a CT scan of a patient. This is made possible by the vol-

ume renderer implemented in this thesis. Figure 5.13 shows an MRI (left)

and CT (right) scan of a monkey’s head positioned side-by-side. Figure 5.14

shows the result of positioning these two volumes in exactly the same space.

By observing the registered image, additional information may be identified

from the scans. In contrast to medical imaging applications, simulations and

video games desire a number of models arbitrarily positioned throughout a

scene. Figure 5.11 shows six different volumes rendered simultaneously

side-by-side.

Due to a limitation in CUDA regarding the usage of texture memory, the

maximum number of volumes stored in texture memory must be specified at

compile time. For the purposes of this application, a limit of 32 maximum

volumes was imposed. This is similar to the restriction of 8 maximum light

sources in openGL. Figure 5.12 shows the maximum number of volumes

displayed simultaneously.

Several scenes were generated to characterize the performance of the

volume renderer as the number of volume increase. Table 6.9 shows the

performance with a varying number of identical volumes existing in the

same space. Table 6.10 shows the performance with a varying number of

97

volumes placed side-by-side within the scene. These two methods of posi-

tioning volumes were chosen to reflect the likely applications of the volume

renderer. Both positioning methods show a significant performance drop

off as the number of rendered volumes increases. However, an increase in

overlapping volumes decreases performance at a far greater rate than non-

overlapping volumes. This is primarily due to the number of threads that

must be dedicated to each volume. In the case of the overlapping volumes,

each volume consumes approximately 60% of the frame. However, each

non-overlapping volume consumes only approximately 2% of the frame.

This requires far fewer threads dedicated to ray marching. Furthermore, the

positioning of the non-overlapping volumes naturally balances the compu-

tational load, as opposed to the addition of overlapping volumes which only

adds computational load to threads already consumed with work. It can be

concluded from these results that applications such as medical imaging may

be limited to fewer models to maintain acceptable interactive performance.

Simulations and video game applications have a much higher threshold in

regards to the number of displayed volumes before the performance be-

comes unacceptable.

7.10 Anaglyph Analysis

Anaglyphs are a common way to view 2D images as “3D”, typically requir-

ing 3D glasses with a red and cyan lenses to properly view the image. The

98

images are constructed by combining images from two different perspec-

tives with a red shift on the image from one perspective and a cyan shift

on the image from the other. Ideally, when someone looks through the 3D

glasses, the eye looking through red film can only perceive the perspective

taken with the blue shift, and vice-versa for the other eye. The visual cor-

tex interprets this difference in perspective and gives the illusion of depth.

Anaglyphs have appeared several times in recent films, and stereoscopy in

general has been in development for simulation, virtual reality and video

game applications.

Another novel feature in the volume renderer implemented in this work

is ability to interactively generate anaglyph renderings of volumes. Figure

5.17 shows an engine block rendered as an anaglyph. The anaglyph ren-

derings produced by the volume renderer are arguably somewhat difficult to

view as stereoscopic images. There are multiple forms of depth being con-

veyed using the volume renderer. Volumes inherently have a sense of depth

as an observer can see through the volume. The ability to interact with the

volume by animating the volume in 3D space further introduces a sense of

depth. These factors coupled with the anaglyph renderings may initially be

confusing for an observer.

Table 6.11 shows the performance difference between traditional volume

rendering and anaglyph volume rendering. Rendering an anaglyph may re-

sult in up to a 50% decrease in performance. This is to be expected because

of the nature of the anaglyph rendering algorithm. The scene is essentially

99

rendered twice from the two camera perspectives, with only the red channel

retained from one rendering and the blue and green channels retained from

the other, and the resulting renderings are accumulated for a final result.

Despite the initial difficulty in visualizing such images, the anaglyph ren-

derings form a proof of concept for potential future applications, as well

as benefits to existing applications such as the 3D visualization of medical

images, fluids, CAD drawings and more. Furthermore, although there is a

significant decrease in performance when rendering anaglyphs, the GeForce

GTX260 is still capable of rendering an anaglyph at a rate of 30 frames per

second, an acceptable interactive frame rate.

100

Chapter 8

Thoughts for Investigation and
Future Work

This thesis investigates a number of implementation choices as well as ren-

dering techniques, features, applications. However, there are many areas

left for further exploration and optimization. This chapter discusses several

aspects of the volume rendering system developed in this thesis, and volume

rendering concepts in general which many benefit from further research.

8.1 Performance

Careful attention has been payed to the register usage of the volume ren-

derer. It has been shown that the registers used per thread may be altered

to balance multiprocessor occupancy and local memory usage. However,

despite numerous attempts, no consistent method of decreasing the number

of required registers was found. Decreasing the required number of regis-

ters would allow for increased occupancy, while decreasing local memory

usage.

Branching is a concern when designing CUDA applications. If threads

101

within a warp branch, the warp will be “split,” and the threads in the warp

will follow different execution paths. Ideally, all the threads in a warp

should have the same execution path. Branching is inherent in the ray cast-

ing algorithm, introduced by the bounding box hit test. If a bounding box is

hit the ray marching algorithm is performed, if the bounding box is not hit

the function simply returns. This warrants investigation into techniques to

prevent threads within a warp from branching to improve performance.

Early ray termination has been shown to provide performance increases

of up to 2.6x. While the implementation of early ray termination works for

individual volumes, it does not allow for multiple volumes along the same

ray to contribute to the accumulated density/opacity. If an adjustment were

made to perform early ray termination across multiple volumes, a further

performance benefit would be seen by essentially occluding volumes which

do not contribute to a pixels color.

Empty space skipping is another common performance enhancement for

volume rendering. Space skipping within a volume requires a volume to

be segmented in some way to identify areas of empty space. One of the

most common ways to perform this segmentation is octree space subdivision

[8]. Octree subdivision may be performed in an initialization phase of the

volume renderer, and the results may be stored in texture memory.

102

8.2 Image Quality

One common visualization feature is an illumination model. This model

requires lights and the computation of a gradient of a volume at any given

point to obtain a normal vector used when reflecting light. The volume ren-

dering system implemented in this thesis uses a transfer function to assign

color and opacity to voxel data of varying density. However, lights are not

utilized to perform any sort of shading on the volumes. A significant amount

of code exists in the implementation which supports Phong illumination and

placing lights within a scene, but the code is not currently utilized. The only

missing aspect is the computation of the gradient at a given point within a

volume, which necessary to determine the orientation of that point in the

volume to a light source.

Supersampling is used to sample multiple rays per pixel, at the expense

of sampling multiple times [1]. One possibility is implementing adaptive

supersampling for certain areas of “focus,” “importance,” or possibly just

objects closer the the viewer via supersampling, but as models get further

away, decreasing the sampling rate to even out the number of samples per-

formed in a scene. This could be implemented by supersampling objects in

focus to achieve great detail, and sampling objects out of focus “normally.”

There could also be a sampling falloff function based on the distance from

the viewplane. Particularly, there could be an exponential or linear falloff

starting at the viewplane with a sample distance at a unit length, such that the

103

sampling rate would be measured once the unit length has been traversed.

A step size is utilized in the ray marching algorithm to determine the

distance of each step when sampling a volume. Choosing an appropriate

step size for a volume is an important measure for reducing aliasing in the

rendered image. The step ideal step size is dependent on both the voxel

resolution of a volume and the size in world coordinates of that volume.

Adaptive selection of step sizes may be implemented to chose the optimal

step size for each volume rendered within a scene.

8.3 User Interaction

A camera system was constructed to interactively view the volumes in a

scene. The camera controls are styled after video game controls, specifically

known as “first person shooter” controls. However, the camera controls

are somewhat buggy; it is possible to fully rotate around the x-axis but not

the y-axis. Resolving these bugs would be the first step to a better user

interface. However, many advancements have been made other forms of

user input, such as multi-touch technologies and gesture recognition. The

combination of these technologies with volume rendering would provide a

unique interactive experience.

The volume renderer makes use of a transfer function stored in texture

memory to assign a color to a density. However, this transfer function is

globally assigned and cannot be changed on a per-volume basis. There is

no inherent limitation in the CUDA platform regarding this capability, it

104

is simply that the resulting code, much like the handling of multiple tex-

tures storing volume data, is very inelegant. A terse and elegant solution

to this problem would allow for greater customization of the visualization

of multiple volumes. Providing a user with the ability to alter the transfer

function of individual volumes in real time may assist in the visualization

of the volume data, and allow for more information to be obtained from the

data set.

Interaction with volume data sets is an important aspect of volume ren-

dering. The real time interaction of volume data sets developed in this thesis

opens the way for other user interface techniques for manipulating volumes.

Many human interface technologies are in constant development, such as

multi-touch technologies and gesture recognition. Combining the perfor-

mance and interactive capabilities of the volume renderer implemented in

this work with these various human interface technologies would provide a

new interactive experience that may benefit the doctors scientists and engi-

neers that wish to explore volume data sets.

8.4 Applications

A highly sought after application in the medical field is the real time de-

formable registration of volume data. This potentially allows different scans

of a patient, taken at different times with the patient in different orienta-

tions, to be deformed into a similar orientation allowing the volumes to

be overlapped and rendered together. The volume renderer implemented

105

in this work is capable of multiple volume rendering and rigid registration.

However, it is possible to implement additional deformation algorithms such

as elasticity, etc.in the volume renderer to achieve deformable registration.

The implementation of real-time deformable registration is another excel-

lent thesis topic.

Volume data sets are not typically animated in the same way as polygonal

meshes. Volume data is typically static data, while polygonal models such

as those found in video games and simulations may have rigging to perform

structured motion of portions of the same model. If a volume rendering

system were to be used in a simulation or video game engine, animation

of the volume models would be an excellent feature. The transformations

performed in deformable registration such as elasticity may facilitate this

animation.

Constructive solid geometry is a technique often used when modeling

solid objects. It allows the creation of new geometry by intersecting objects

of a certain geometry and rendering a boolean union, difference, or intersec-

tion of the intersecting objects. When multiple volumes intersect or overlap

each other in the volume renderer, the resulting color must be determined

by a sort of accumulation of the composited densities. However, in the same

vein as constructive solid geometry, it is possible to perform boolean union,

difference, or intersection operations on a number of intersecting volumes

by altering their densities. This has a number of potential applications, such

106

as removing unnecessary information from a large volume data set by ap-

plying a type of mask and rendering the boolean intersection or difference

of the rendered volume and the mask.

Mipmapping is a common texturing technique used in computer graph-

ics. Several resolutions of the same texture known as mipmaps may be

stored and accessed depending on the required resolution of the texture.

Textures that appear further away require less resolution than textures that

appear close to the viewer. As an extension of current techniques to deal

with bitmap texturing in modern 3D graphics applications, it is possible to

mipmap a 3D Texture [19], and by extension, the volumes data sets used in

the volume renderer. Mipmapping a 3D Texture should allow for the same

types of performance enhancements exhibited by the technique in two di-

mensions. When using octrees, mipmapped 3D texturing techniques can be

applied in conjunction with more common empty space skipping techniques

to enhance performance with very minimal overhead [8]. Furthermore, it

may be possible to compress the representations of these volumes [3].

Hypertextures, discussed by Ken Perlin are one way of applying various

volumetric effects to a ray casted surface [11]. Hypertextures are often im-

plemented using volume ray casting, and are capable of representing objects

extremely difficult or impossible to represent using only surfaces, such as

fire, gas, or furry objects. Similar to bump mapping techniques used in more

conventional computer graphics with polygon meshes it is possible to apply

hypertextures on the surface of an object to form a highly detailed surface

107

effect. This effect could be applied to volumetric models, as well as ray

casted polygonal meshes commonly used in computer graphics. Perform-

ing volume rendering as well as polygonal rasterization in the same scene

would require some sort of hybrid rendering engine. Both the hybrid ren-

dering system and Perlin noise function used to generate hypertextures may

be candidates for implementation using CUDA. Some volumetric effects are

discussed in [4].

108

Chapter 9

Conclusion

This thesis has explored the benefits of general-purpose computing on graph-

ics processing units by implementing and analyzing a volume rendering

system. The renderer has been made accessible to both Mac OS X and

Microsoft Windows operating systems, with the ability to achieve interac-

tive frame rates on both desktop and laptop machines. The volume renderer

has exhibited a tremendous performance increase over alternative sequen-

tial implementations, allowing for the real time interaction of volume data.

In comparison to a primitive sequential volume renderer, the CUDA vol-

ume renderer achieved approximately a 40x speedup. When comparing the

price-performance ratio of a mid to high range traditional CPU to a mid

to high range GPU performing general purpose computations for the pur-

pose of volume rendering, the GPU was capable of delivering up to 70x the

frames per second per dollar of the CPU.

The ray casting algorithm has been successfully exploited using CUDA,

and a number of performance and quality optimizations have been imple-

mented including early ray termination, texture filtering and supersampling.

Early ray termination has shown a performance benefit of up to 2.6x speedup

109

on certain systems. Despite the image quality to performance ratio achieved

by supersampling, linear texture filtering has been shown to tremendously

enhance the quality of volume renderings at no discernible reduction in

frame rate.

A number of applications of volume rendering have been implemented

and accelerated to allow the real time interaction of volume data sets. A

framework was constructed to allow the interaction of multiple arbitrarily

placed volumes within a scene, providing a proof of concept for volume

based simulations and video games. The volumes may be overlapped to

perform a type of rigid registration with interactive frame rates useful in

medical imaging and engineering fields. A unique way of viewing volumes

has been introduced using stereoscopic anaglyphs to provide a depth effect

also while maintaining interactive frame rates.

This thesis has demonstrated the performance benefits that general-purpose

computing on graphics processing units can bring to parallelizable applica-

tions such as volume rendering. The framework developed using this the-

sis is easily extensible to allow future efforts the ability to investigate new

performance and quality enhancements, as well as facilitating more radical

approaches to volume rendering applications and interaction. With the con-

cepts and applications discussed in this thesis, and as GPGPU technology

matures, hopefully new and exciting approaches to volume rendering will

emerge.

110

Bibliography

[1] Franklin C. Crow. The aliasing problem in computer-generated shaded
images. Commun. ACM, 20(11):799–805, 1977.

[2] Zvi Devir. Introduction to volume rendering. Course Presentation at
Technion - Israel Institute of Technology.

[3] N. Fout and Kwan-Liu Ma. Transform coding for hardware-
accelerated volume rendering. Visualization and Computer Graphics,

IEEE Transactions on, 13(6):1600–1607, Nov.-Dec. 2007.

[4] Milan Ikits, Joe Kniss, Aaron Lefohn, and Charles Hansen. Volume
rendering techniques. In GPU Gems: Programming Techniques, Tips

and Tricks for Real-Time Graphics, chapter 39, pages 667–692. Pear-
son Higher Education, 2004.

[5] Jusub Kim. Efficient rendering of large 3-D and 4-D scalar fields. PhD
thesis, University of Maryland, College Park, May 2008.

[6] J. Kruger and R. Westermann. Acceleration techniques for gpu-based
volume rendering. In VIS ’03: Proceedings of the 14th IEEE Visual-

ization 2003 (VIS’03), page 38, Washington, DC, USA, 2003. IEEE
Computer Society.

[7] Philippe Lacroute and Marc Levoy. Fast volume rendering using a
shear-warp factorization of the viewing transformation. In SIGGRAPH

111

’94: Proceedings of the 21st annual conference on Computer graph-

ics and interactive techniques, pages 451–458, New York, NY, USA,
1994. ACM.

[8] Sylvain Lefebvre, Samuel Hornus, and Fabrice Neyret. Octree tex-
tures on the gpu. In GPU Gems 2: Programming Techniques for

High-Performance Graphics and General-Purpose Computation (Gpu

Gems), chapter 37, pages 595–613. Addison-Wesley Professional,
2005.

[9] NVIDIA. NVIDIA CUDA Programming Guide, 1.0 edition, June 2007.
Available: http://www.nvidia.com/cuda.

[10] NVIDIA. NVIDIA CUDA Programming Guide, 2.0 edition, June 2008.
Available: http://www.nvidia.com/cuda.

[11] K. Perlin and E. M. Hoffert. Hypertexture. In SIGGRAPH ’89: Pro-

ceedings of the 16th annual conference on Computer graphics and

interactive techniques, pages 253–262, New York, NY, USA, 1989.
ACM.

[12] Timothy J. Purcell, Ian Buck, William R. Mark, and Pat Hanrahan. Ray
tracing on programmable graphics hardware. In SIGGRAPH ’05: ACM

SIGGRAPH 2005 Courses, page 268, New York, NY, USA, 2005.
ACM.

[13] Stefan Roettger. The volume library. http://www9.

informatik.uni-erlangen.de/External/vollib/.

[14] Stefan Roettger, Stefan Guthe, Daniel Weiskopf, Thomas Ertl, and
Wolfgang Strasser. Smart hardware-accelerated volume rendering. In
VISSYM ’03: Proceedings of the symposium on Data visualisation

112

2003, pages 231–238, Aire-la-Ville, Switzerland, Switzerland, 2003.
Eurographics Association.

[15] S. Stegmaier, M. Strengert, T. Klein, and T. Ertl. A simple and flexi-
ble volume rendering framework for graphics-hardware-based raycast-
ing. Volume Graphics, 2005. Fourth International Workshop on, pages
187–241, June 2005.

[16] Kevin Suffern. Ray Tracing from the Ground Up. A. K. Peters, Ltd.,
Natick, MA, USA, 2007.

[17] Wikipedia. Volume ray casting — wikipedia, the free ency-
clopedia. http://en.wikipedia.org/wiki/Volume_ray_
casting, 2008.

[18] Wikipedia. Volume rendering — wikipedia, the free en-
cyclopedia. http://en.wikipedia.org/wiki/Volume_

rendering, 2009.

[19] Lance Williams. Pyramidal parametrics. In SIGGRAPH ’83: Proceed-

ings of the 10th annual conference on Computer graphics and interac-

tive techniques, pages 1–11, New York, NY, USA, 1983. ACM.

113

Appendix A

Compiling the Volume Renderer

The volume renderer has been developed under Mac OS X and Microsoft

Windows Vista. A makefile has been maintained for compilation under OS

X, and a Visual Studio 2005 project has been maintained and verified to

work under Windows XP 32 bit and Windows Vista 64 bit. The various

projects reference necessary libraries and other common data within the

main volume renderer directory, so the directory may be located anywhere

on the desired system providing the subdirectories are not altered. OpenGL,

GLUT and CUDA are required for compilation. The necessary libraries

should be included in the CUDA toolkit and SDK, available from the fol-

lowing source:

http://www.nvidia.com/object/cuda_get.html

114

Appendix B

Using the Volume Renderer

The volume renderer has a number of settings that may be set before compi-

lation. The “Scene.h” file in the Scene directory contains several definitions

used throughout the project. This file contains settings for the image reso-

lution, texture filtering mode, early ray termination threshold, degree of su-

persampling hypertexture random seed and bounds checking, stereoscopic

anaglyph enable, and various debug options. When changing these settings,

make sure to rebuild the entire project when compiling.

Part of the volume rendering framework goals were to create a kind of

script that defines the scene to be rendered. “World.cpp” in the World direc-

tory contains a single function called “build world.”

This function is responsible for setting the background color of the scene,

the camera position and orientation within the scene, the position and color

of lighting (not currently used), and several aspects of the volumes to be ren-

dered. The function specifies the number of volumes to be displayed, which

volume data to load for each volume, their coordinates in world space, the

step size of each volume and a density modifier for each volume.

Once compiled and running, a user can interact with the volume using

115

keyboard and mouse controls. These controls and their intended actions are

described below. Note that the camera exhibits some unexpected behavior

under special cases; the following controls describe the intended operation

of the camera.

Keyboard Controls:

’w’ Move forward along Z axis

’s’ Move backwards along Z axis

’a’ Move left along X axis

’d’ Move right along X axis

’ ’ Move up along Y axis

’c’ Move down along Y axis

’+’ or ’=’ Move forward along Z axis

’-’ or ’_’ Move backwards along Z axis

up Tilt the camera up

down Tilt the camera down

left Tilt the camera left

right Tilt the camera right

Mouse Controls:

left click Click and drag to rotate the camera

right click Click and drag to translate the camera

middle click Click and drag up and down to zoom

116

Appendix C

Structure of Included CD

A data CD has been included with this thesis document containing the

source code and related files for compilation and execution of the volume

renderer developed in this thesis, as well as digital copies of various doc-

uments pertaining to the thesis and other various resources. The following

lists each directory on the CD, with a description of the directory’s contents.

bin - Contains the executable binaries for Mac OS X (darwin),

Windows 32 bit (win32) and Windows 64 bit (win64) operating

systems.

common - Contains the common files used to compile the volume

renderer. The various projects contain relative path

references to this folder.

data - Contains a number of volume data sets compatable with the

volume renderer, as well as a readme listing the necessary

metadata for each volume and a citation of where the volume

was obtained. Appendix D contains the information from this

readme.

doc - Contains digital copies of this thesis document and the

related images used in it’s creation, a digital copy of the

approved thesis proposal, and a digital copy and video of

the defense presntation.

lib - Contains libraries necessary for the compilation of the

volume renderer on Mac OS X.

misc - Contains miscelaneous scripts and utilities used to

generate segments of code and convert volume data sets for

use in the volume renderer.

117

obj - Contains the intermediate object files produced in the

compilation of the volume renderer on Mac OS X and Windows

systems.

projects - Contains the project files for compiling the volume renderer

under Mac OS X and Windows. The Make directory is used for

compilation under Mac OS X using the make utillity, and the

VS2005 is used for compilation under Windows using Visual

Studio 2005.

src - Contains the source code for the volume renderer. This

directory is further divided into self-explanatory sub-

directories containing the relative source code for that

particular component of the volume renderer.

118

Appendix D

Listing of Sample Volumes

The volumes used in this thesis have been collected by a variety of sources.

The sources, as well as the necessary metadata about each volume are doc-

umented here. All edge ratios are 1:1:1 unless otherwise noted.

Bonsai2-lO

x-512 y-512 z-189 0.402344 : 0.402344 : 1

Linear Quantized CT Scan with contrast dye of a bonsai tree

http://www9.informatik.uni-erlangen.de/External/vollib/

Box

x-64 y-64 z-64

A solid box

http://www9.informatik.uni-erlangen.de/External/vollib/

Bucky

x-32 y-32 z-32

A Buckyball provided in the NVIDIA CUDA SDK

http://nvidia.com/cuda

C60

x-64 y-64 z-64

A simulated Buckyball

http://idav.ucdavis.edu/˜okreylos/PhDStudies/Spring2000/ECS277/index.html

C60Large

x-128 y-128 z-128

A simulated Buckyball

119

http://idav.ucdavis.edu/˜okreylos/PhDStudies/Spring2000/ECS277/index.html

DTI

x-128 y-128 z-58

DTI scan of a brain

http://www9.informatik.uni-erlangen.de/External/vollib/

Engine

x-256 y-256 z-256

Two cylinders of an engine block

http://www9.informatik.uni-erlangen.de/External/vollib/

Frog

x-256 y-256 z-44 0.5 : 0.5 : 1

This is the second frog used in the Whole Frog Project

http://www9.informatik.uni-erlangen.de/External/vollib/

Fuel

x-64 y-64 z-64

Simulation of fuel injection into a combustion chamber

http://www9.informatik.uni-erlangen.de/External/vollib/

Monkey-CT

x-256 y-256 z-62 1 : 1 : 3

CT scan of a monkey head

http://www9.informatik.uni-erlangen.de/External/vollib/

Monkey-MRI-T2

x-256 y-256 z-62 1 : 1 : 3

MRI scan of a monkey head

http://www9.informatik.uni-erlangen.de/External/vollib/

Neghip

x-64 y-64 z-64

Probability distribution of electrons in a high potential protein molecule

http://www9.informatik.uni-erlangen.de/External/vollib/

Orange

x-256 y-256 z-64 0.390625 : 0.390625 : 1

MRI scan of an orange

http://www9.informatik.uni-erlangen.de/External/vollib/

120

Sphere

x-64 y-64 z-64

Spherical distance volume

http://www9.informatik.uni-erlangen.de/External/vollib/

Spheres

x-128 y-128 z-128

Simulated testing spheres

http://www9.informatik.uni-erlangen.de/External/vollib/

Tomato

x-256 y-256 z-64 0.390625 : 0.390625 : 1

MRI scan of a tomato

http://www9.informatik.uni-erlangen.de/External/vollib/

