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Thesis Goals

* Interactive volume ray casting on CUDA

» Performance and quality enhancements
— Early ray termination
— Supersampling
— Texture filtering

» Exploration of volume rendering applications
— Multiple volume rendering
— Hypertextures
— Stereoscopic anaglyphs

» Extensible and portable rendering framework
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What is Volume Rendering?

* Purpose of volume rendering
— Allows visualization of interior of objects

— Differs from traditional 3D computer graphics,
which only describe an objects surface

* Representation of volumes

— Volumes represented using “voxels”
— Voxels typically store density information
— Optical models assign color and opacity

* Rendering volumes
— Ray casting technique, also used in ray tracing
— Slicing technique
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Ray Casting vs. Slicing

» Ray casting is embarrassingly parallel
* Slicing techniques may exhibit aliasing

* Ray casting has a large number of easily
iImplementable performance and quality
enhancements

» 3D Textures may be used in both ray casting
and slicing techniques

» Ray casting is ideal for a CUDA
Implementation and the goals of this thesis




Ray Casting

* Fire ray from a camera, through a viewplane
* Each ray tests intersection with bounding box
* If intersected, ray march within bounding box

- Light Source

Shadow Ray

Scene Object




Ray Marching

« Step through volume using a given step size
« Sample volume at each point

 Calculate shading if applicable

« Composite the sampled points
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GPGPU

» General-Purpose Computing on Graphics
Processing Units

 Affordable, commodity off the shelf high
performance computing

* Massively parallel processing

» Excellent price-performance ratio

* Low peak GFLOP/s per watt

» Rapidly developing field in computing




What is CUDA?

* A toolkit for programming NVIDIA graphics
cards to perform general purpose
computations (GPGPU)

* Most prominent GPGPU platform currently
available

* Requires CUDA capable device
—8 Series or better, includes mobile platforms

» Requires CUDA specific drivers
—Download at nvidia.com/cuda
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Why do we use CUDA?
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GT200 = GeForce GTX 280
G92 = GeForce 9800 GTX
G80 = GeForce 8800 GTX

G71 = GeForce 7900 GTX NV35 = GeForce FX 5950 Ultra
G70 = GeForce 7800 GTX NV30 = GeForce FX 5800
NV40 = GeForce 6800 Ultra
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How it Works

 The host farms out work to be done on the device
by calling a* :
A Is SIMT (Single Instruction Multiple

Thread), with multiple threads executing
simultaneously

 Threads are the most basic level of the
computational hierarchy

* A shared memory system, but not all threads
share the same memory space




CUDA Architecture

» Threads are grouped into ‘blocks’, which
have 16KB shared memory between threads

 There is a limit of the number of threads
(512) that can be fit into a block

» Blocks are dynamically issued to be
executed on the device

e A’ ' consists of multiple blocks, with no
limit on the number of blocks per grid
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Memory System

Registers per thread
memory per thread located in main memory
memory per thread block
memory located in main memory
memory in main memory — read only
memory in main memory — read only

Host can read/write global, texture and constant
memory

« cudaMalloc(), cudaFree(), cudaMemcpy()
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Volume Rendering on CUDA

» Ray casting Is embarrassingly parallel,
therefore easily exploitable by CUDA

» Each thread is responsible for a ray

* VVolumes are stored in texture memory

» World structure is stored in constant memory

* Pixel Buffer Object is used so rasterized
Image Is displayed using DMA

 Any CUDA device is capable of rendering
volumes, given sufficient memory capacity




Design Considerations

 Load Balancing

* Multiprocesor Occupancy
* Register Usage

* Threads Per Block
 Memory Usage




Load Balancing

* One thread per ray, and assuming no
supersampling, one ray per pixel

* Branching occurs if bounding box is not hit

« CUDA dynamically issues blocks to available
multiprocessors

* Ideally, all threads in a block finish
simultaneously

» Threads per block behaves like a “grain size”

* Dynamically allocated line segments provide
the optimal load balancing




Static Partitioning

Block Strip Cyclic

(Nodes = 4) (Nodes = 4) (Nodes = 4)

Dynamic Partitioning

Line Segment Square Block
(Grain = 9) (Grain = 9)
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Multiprocessor Occupancy

* The ratio of simultaneous computations on a
multiprocessor to maximum possible

* The greater the occupancy, the larger the
number of available compute nodes
* A number of deciding factors:
—Threads per block
—Registers per thread
—Shared memory usage

* No shared memory used in implementation




Register Usage

» Register usage per thread may be set at compile time

» Excess variables are placed in local memory

* Must balance poor local memory performance against
multiprocessor occupancy for optimal performance

32 Registers Per Thread

Max Occupancy

iy Block Size

Warp Occupan

Multiprocessc

0
16 80 144 X8 272 336 400 4e4

Threads Per Block




Threads Per Block

» Should be a multiple of 32 (size of a warp)
» Essentially the “grain size” for partitioning

e Also determines distribution of resources on
a multiprocessor, affecting occupancy

* Experimentation demonstrates that 32
registers per thread and 64 or 128 threads
per block yields optimal performance.




Memory Usage

» Constant Memory
— Caching policy exploits temporal locality
— Only writable by host, outside kernel execution
— Low capacity
— World structure resides in constant memory

* Texture Memory
— Caching policy exploits spatial locality
— Only writable by host, outside kernel execution
— High capacity
— Volume data resides in texture memory
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Features and Applications

* Performance Optimizaitons
— Early ray termination
 Quality Enhancements
— Supersampling
— Texture filtering
* Applications
— Mulitple volume rendering

— Hypertextures
— Anaglyphs




Early Ray Termination

» Terminate the ray marching algorithm once a
given threshold has been reached

* Requires marching in front to back order
» Performance dependent on volume
« Capable of 2x and greater speedup




Super Sampling

* Intended to reduce aliasing (aka: “jaggies”)
along edges of sharp contrast

« Cast multiple rays per pixel and average

* Experimentation yielded underwhelming
results, at high performance cost




Texture Filtering

» Two modes for reading from a texture:
— Point Mode: sample nearest texel to coordinate

— Linear Mode: sample linear average of surrounding
texels to coordinate

 No discernible difference in render time




Hypertextures

* Invented by Ken Perlin, using Perlin noise

* A technique capable of representing objects
difficult to define by triangular meshes, such
as fire, smoke and ice




Multiple Volume Rendering

* Allows for arbitrary placement of volumes

 Allows simultaneous rendering of volumes of
varying resolution and “true” dimensions




Rigid Registration

MRI Scan




Rigid Registration

MRI and CT Scan




Anaglyphs

* Allows for visualization of stereoscopic images
using “3D glasses”

» Each thread fires a ray from two perspectives




Sequential vs. CUDA

* Primitive volume rendering system developed
for sequential execution on CPU

» Sequential system does not perform ray
marching (the majority of rendering workload),
but does perform phong illumination

 Intel Core 2 Quad Q9550 achieves 1.5 FPS

* Nvidia GeForce GTX260 achieves ~60 FPS

» Speedup of ~40x despite significantly reduced
workload of sequential system




Price-Performance Ratio

* Intel Q9550: ~$280 as of May 2009
« Nvidia GTX260: ~$160 as of May 2009

* GPU capable of approximately 70 times the
FPS per dollar of CPU with tested hardware
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Future Work

* Performance
— Reduce register usage
— Reduce branching
— Empty Space Skipping
— Occlusion of volumes
* Image Quality
— lllumination model
— Adaptive antialiasing or step size

» Behavior
— Robust camera functionality




Future Work

* Applications
— Real time deformable registration
— Volumetric animation
— Real time hypertexturing of objects
— Constructive Solid Geometry for volumes
— Volume mipmapping
— Volume compression algorithms
— New methods of interacting with volumes
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Conclusion

» Successful parallelization of volume rendering

* Developed extensible and portable framework for
interactive volume rendering on CUDA

* 60 FPS on mid-high range hardware

* 40x speedup or more over sequential
 GPU has 70x FPS per dollar of CPU
 Early ray termination big performance gain
* Linear texture filtering for great quality

* Multiple volumes and rigid registration

* Unique volume rendering applications
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