
Volume Ray Casting Techniques and
Applications using General Purpose

Computations on Graphics
Processing Units

Michael Romero

M.S. Thesis Defense
Department of Computer Engineering, RIT

June 16, 2009

1

Thesis Goals
• Interactive volume ray casting on CUDA
• Performance and quality enhancements

– Early ray termination
– Supersampling
– Texture filtering

• Exploration of volume rendering applications
– Multiple volume rendering
– Hypertextures
– Stereoscopic anaglyphs

• Extensible and portable rendering framework

2

Outline

• Volume Rendering
• GPGPU Background
• CUDA Architecture
• Volume Rendering on CUDA
• Implemented Features and Analysis
• Future Work
• Conclusion
• Demonstration

3

What is Volume Rendering?
• Purpose of volume rendering

– Allows visualization of interior of objects
– Differs from traditional 3D computer graphics,

which only describe an objects surface
• Representation of volumes

– Volumes represented using “voxels”
– Voxels typically store density information
– Optical models assign color and opacity

• Rendering volumes
– Ray casting technique, also used in ray tracing
– Slicing technique

4

Volume Rendering Triangular Mesh

5

Ray Casting vs. Slicing

• Ray casting is embarrassingly parallel
• Slicing techniques may exhibit aliasing
• Ray casting has a large number of easily

implementable performance and quality
enhancements

• 3D Textures may be used in both ray casting
and slicing techniques

• Ray casting is ideal for a CUDA
implementation and the goals of this thesis

6

Ray Casting
• Fire ray from a camera, through a viewplane
• Each ray tests intersection with bounding box
• If intersected, ray march within bounding box

7

Ray Marching
• Step through volume using a given step size
• Sample volume at each point
• Calculate shading if applicable
• Composite the sampled points

8

Outline

• Volume Rendering
• GPGPU Background
• CUDA Architecture
• Volume Rendering on CUDA
• Implemented Features and Analysis
• Future Work
• Conclusion
• Demonstration

9

GPGPU

• General-Purpose Computing on Graphics
Processing Units

• Affordable, commodity off the shelf high
performance computing

• Massively parallel processing
• Excellent price-performance ratio
• Low peak GFLOP/s per watt
• Rapidly developing field in computing

10

What is CUDA?

• A toolkit for programming NVIDIA graphics
cards to perform general purpose
computations (GPGPU)

• Most prominent GPGPU platform currently
available

• Requires CUDA capable device
–8 Series or better, includes mobile platforms

• Requires CUDA specific drivers
–Download at nvidia.com/cuda

11

Why do we use CUDA?

Image Courtesy of NVIDIA

12

Outline

• Volume Rendering
• GPGPU Background
• CUDA Architecture
• Volume Rendering on CUDA
• Implemented Features and Analysis
• Future Work
• Conclusion
• Demonstration

13

How it Works
• The host farms out work to be done on the device

by calling a ‘kernel’
• A kernel is SIMT (Single Instruction Multiple

Thread), with multiple threads executing
simultaneously

• Threads are the most basic level of the
computational hierarchy

• A shared memory system, but not all threads
share the same memory space

14

CUDA Architecture

• Threads are grouped into ‘blocks’, which
have 16KB shared memory between threads

• There is a limit of the number of threads
(512) that can be fit into a block

• Blocks are dynamically issued to be
executed on the device

• A ‘grid’ consists of multiple blocks, with no
limit on the number of blocks per grid

15

16

Memory System
• Registers per thread
• Local memory per thread located in main memory
• Shared memory per thread block
• Global memory located in main memory
• Texture memory in main memory – read only
• Constant memory in main memory – read only
• Host can read/write global, texture and constant

memory
• cudaMalloc(), cudaFree(), cudaMemcpy()

17

18

Outline

• Volume Rendering
• GPGPU Background
• CUDA Architecture
• Volume Rendering on CUDA
• Implemented Features and Analysis
• Future Work
• Conclusion
• Demonstration

19

Volume Rendering on CUDA

• Ray casting is embarrassingly parallel,
therefore easily exploitable by CUDA

• Each thread is responsible for a ray
• Volumes are stored in texture memory
• World structure is stored in constant memory
• Pixel Buffer Object is used so rasterized

image is displayed using DMA
• Any CUDA device is capable of rendering

volumes, given sufficient memory capacity

20

Design Considerations

• Load Balancing
• Multiprocesor Occupancy
• Register Usage
• Threads Per Block
• Memory Usage

21

Load Balancing

• One thread per ray, and assuming no
supersampling, one ray per pixel

• Branching occurs if bounding box is not hit
• CUDA dynamically issues blocks to available

multiprocessors
• Ideally, all threads in a block finish

simultaneously
• Threads per block behaves like a “grain size”
• Dynamically allocated line segments provide

the optimal load balancing
22

23

Blue: Thread ID Red: Block ID

24

Multiprocessor Occupancy

• The ratio of simultaneous computations on a
multiprocessor to maximum possible

• The greater the occupancy, the larger the
number of available compute nodes

• A number of deciding factors:
–Threads per block
–Registers per thread
–Shared memory usage

• No shared memory used in implementation

25

Register Usage
• Register usage per thread may be set at compile time
• Excess variables are placed in local memory
• Must balance poor local memory performance against

multiprocessor occupancy for optimal performance

26

Threads Per Block

• Should be a multiple of 32 (size of a warp)
• Essentially the “grain size” for partitioning
• Also determines distribution of resources on

a multiprocessor, affecting occupancy
• Experimentation demonstrates that 32

registers per thread and 64 or 128 threads
per block yields optimal performance.

27

Memory Usage

• Constant Memory
– Caching policy exploits temporal locality
– Only writable by host, outside kernel execution
– Low capacity
– World structure resides in constant memory

• Texture Memory
– Caching policy exploits spatial locality
– Only writable by host, outside kernel execution
– High capacity
– Volume data resides in texture memory

28

Outline

• Volume Rendering
• GPGPU Background
• CUDA Architecture
• Volume Rendering on CUDA
• Implemented Features and Analysis
• Future Work
• Conclusion
• Demonstration

29

Features and Applications

• Performance Optimizaitons
– Early ray termination

• Quality Enhancements
– Supersampling
– Texture filtering

• Applications
– Mulitple volume rendering
– Hypertextures
– Anaglyphs

30

Early Ray Termination
• Terminate the ray marching algorithm once a

given threshold has been reached
• Requires marching in front to back order
• Performance dependent on volume
• Capable of 2x and greater speedup

31

Super Sampling
• Intended to reduce aliasing (aka: “jaggies”)

along edges of sharp contrast
• Cast multiple rays per pixel and average
• Experimentation yielded underwhelming

results, at high performance cost

32

Texture Filtering
• Two modes for reading from a texture:
– Point Mode: sample nearest texel to coordinate
– Linear Mode: sample linear average of surrounding

texels to coordinate
• No discernible difference in render time

33

Hypertextures
• Invented by Ken Perlin, using Perlin noise
• A technique capable of representing objects

difficult to define by triangular meshes, such
as fire, smoke and ice

34

Multiple Volume Rendering
• Allows for arbitrary placement of volumes
• Allows simultaneous rendering of volumes of

varying resolution and “true” dimensions

35

Rigid Registration

MRI Scan CT Scan

36

Rigid Registration

MRI and CT Scan

37

Anaglyphs
• Allows for visualization of stereoscopic images

using “3D glasses”
• Each thread fires a ray from two perspectives

38

Sequential vs. CUDA

• Primitive volume rendering system developed
for sequential execution on CPU

• Sequential system does not perform ray
marching (the majority of rendering workload),
but does perform phong illumination

• Intel Core 2 Quad Q9550 achieves 1.5 FPS
• Nvidia GeForce GTX260 achieves ~60 FPS
• Speedup of ~40x despite significantly reduced

workload of sequential system

39

Price-Performance Ratio
• Intel Q9550: ~$280 as of May 2009
• Nvidia GTX260: ~$160 as of May 2009
• GPU capable of approximately 70 times the

FPS per dollar of CPU with tested hardware

40

Outline

• Volume Rendering
• GPGPU Background
• CUDA Architecture
• Volume Rendering on CUDA
• Implemented Features and Analysis
• Future Work
• Conclusion
• Demonstration

41

Future Work

• Performance
– Reduce register usage
– Reduce branching
– Empty Space Skipping
– Occlusion of volumes

• Image Quality
– Illumination model
– Adaptive antialiasing or step size

• Behavior
– Robust camera functionality

42

Future Work

• Applications
– Real time deformable registration
– Volumetric animation
– Real time hypertexturing of objects
– Constructive Solid Geometry for volumes
– Volume mipmapping
– Volume compression algorithms
– New methods of interacting with volumes

43

Outline

• Volume Rendering
• GPGPU Background
• CUDA Architecture
• Volume Rendering on CUDA
• Implemented Features and Analysis
• Future Work
• Conclusion
• Demonstration

44

Conclusion
• Successful parallelization of volume rendering
• Developed extensible and portable framework for

interactive volume rendering on CUDA
• 60 FPS on mid-high range hardware
• 40x speedup or more over sequential
• GPU has 70x FPS per dollar of CPU
• Early ray termination big performance gain
• Linear texture filtering for great quality
• Multiple volumes and rigid registration
• Unique volume rendering applications

45

Outline

• Volume Rendering
• GPGPU Background
• CUDA Architecture
• Volume Rendering on CUDA
• Implemented Features and Analysis
• Future Work
• Conclusion
• Demonstration

46

