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Thesis Goals
• Interactive volume ray casting on CUDA
• Performance and quality enhancements

– Early ray termination
– Supersampling
– Texture filtering

• Exploration of volume rendering applications
– Multiple volume rendering
– Hypertextures
– Stereoscopic anaglyphs

• Extensible and portable rendering framework
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What is Volume Rendering?
• Purpose of volume rendering

– Allows visualization of interior of objects
– Differs from traditional 3D computer graphics, 

which only describe an objects surface
• Representation of volumes

– Volumes represented using “voxels”
– Voxels typically store density information
– Optical models assign color and opacity

• Rendering volumes
– Ray casting technique, also used in ray tracing
– Slicing technique
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Volume Rendering Triangular Mesh
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Ray Casting vs. Slicing

• Ray casting is embarrassingly parallel
• Slicing techniques may exhibit aliasing
• Ray casting has a large number of easily 

implementable performance and quality 
enhancements

• 3D Textures may be used in both ray casting 
and slicing techniques

• Ray casting is ideal for a CUDA 
implementation and the goals of this thesis
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Ray Casting
• Fire ray from a camera, through a viewplane
• Each ray tests intersection with bounding box
• If intersected, ray march within bounding box
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Ray Marching
• Step through volume using a given step size
• Sample volume at each point
• Calculate shading if applicable
• Composite the sampled points
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GPGPU

• General-Purpose Computing on Graphics 
Processing Units

• Affordable, commodity off the shelf high 
performance computing

• Massively parallel processing
• Excellent price-performance ratio
• Low peak GFLOP/s per watt
• Rapidly developing field in computing
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What is CUDA?

• A toolkit for programming NVIDIA graphics 
cards to perform general purpose 
computations (GPGPU)

• Most prominent GPGPU platform currently 
available

• Requires CUDA capable device
–8 Series or better, includes mobile platforms

• Requires CUDA specific drivers
–Download at nvidia.com/cuda
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Why do we use CUDA?

Image Courtesy of NVIDIA
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How it Works
• The host farms out work to be done on the device 

by calling a ‘kernel’
• A kernel is SIMT (Single Instruction Multiple 

Thread), with multiple threads executing 
simultaneously

• Threads are the most basic level of the 
computational hierarchy

• A shared memory system, but not all threads 
share the same memory space
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CUDA Architecture

• Threads are grouped into ‘blocks’, which 
have 16KB shared memory between threads

• There is a limit of the number of threads 
(512) that can be fit into a block

• Blocks are dynamically issued to be 
executed on the device

• A ‘grid’ consists of multiple blocks, with no 
limit on the number of blocks per grid
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Memory System
• Registers per thread
• Local memory per thread located in main memory
• Shared memory per thread block
• Global memory located in main memory
• Texture memory in main memory – read only
• Constant memory in main memory – read only
• Host can read/write global, texture and constant 

memory
• cudaMalloc(), cudaFree(), cudaMemcpy()
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Volume Rendering on CUDA

• Ray casting is embarrassingly parallel, 
therefore easily exploitable by CUDA

• Each thread is responsible for a ray
• Volumes are stored in texture memory
• World structure is stored in constant memory
• Pixel Buffer Object is used so rasterized 

image is displayed using DMA
• Any CUDA device is capable of rendering 

volumes, given sufficient memory capacity
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Design Considerations

• Load Balancing
• Multiprocesor Occupancy
• Register Usage
• Threads Per Block
• Memory Usage
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Load Balancing

• One thread per ray, and assuming no 
supersampling, one ray per pixel

• Branching occurs if bounding box is not hit
• CUDA dynamically issues blocks to available 

multiprocessors
• Ideally, all threads in a block finish 

simultaneously
• Threads per block behaves like a “grain size”
• Dynamically allocated line segments provide 

the optimal load balancing
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Blue: Thread ID Red: Block ID
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Multiprocessor Occupancy

• The ratio of simultaneous computations on a 
multiprocessor to maximum possible

• The greater the occupancy, the larger the 
number of available compute nodes

• A number of deciding factors:
–Threads per block
–Registers per thread
–Shared memory usage

• No shared memory used in implementation
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Register Usage
• Register usage per thread may be set at compile time
• Excess variables are placed in local memory
• Must balance poor local memory performance against 

multiprocessor occupancy for optimal performance

26



Threads Per Block

• Should be a multiple of 32 (size of a warp)
• Essentially the “grain size” for partitioning
• Also determines distribution of resources on 

a multiprocessor, affecting occupancy
• Experimentation demonstrates that 32 

registers per thread and 64 or 128 threads 
per block yields optimal performance.

27



Memory Usage

• Constant Memory
– Caching policy exploits temporal locality
– Only writable by host, outside kernel execution
– Low capacity
– World structure resides in constant memory

• Texture Memory
– Caching policy exploits spatial locality
– Only writable by host, outside kernel execution
– High capacity
– Volume data resides in texture memory
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Features and Applications

• Performance Optimizaitons
– Early ray termination

• Quality Enhancements
– Supersampling
– Texture filtering

• Applications
– Mulitple volume rendering
– Hypertextures
– Anaglyphs
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Early Ray Termination
• Terminate the ray marching algorithm once a 

given threshold has been reached
• Requires marching in front to back order
• Performance dependent on volume
• Capable of 2x and greater speedup
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Super Sampling
• Intended to reduce aliasing (aka: “jaggies”) 

along edges of sharp contrast
• Cast multiple rays per pixel and average
• Experimentation yielded underwhelming 

results, at high performance cost
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Texture Filtering
• Two modes for reading from a texture:
– Point Mode: sample nearest texel to coordinate
– Linear Mode: sample linear average of surrounding 

texels to coordinate
• No discernible difference in render time
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Hypertextures
• Invented by Ken Perlin, using Perlin noise
• A technique capable of representing objects 

difficult to define by triangular meshes, such 
as fire, smoke and ice
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Multiple Volume Rendering
• Allows for arbitrary placement of volumes
• Allows simultaneous rendering of volumes of 

varying resolution and “true” dimensions

35



Rigid Registration

MRI Scan CT Scan
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Rigid Registration

MRI and CT Scan
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Anaglyphs
• Allows for visualization of stereoscopic images 

using “3D glasses”
• Each thread fires a ray from two perspectives
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Sequential vs. CUDA

• Primitive volume rendering system developed 
for sequential execution on CPU

• Sequential system does not perform ray 
marching (the majority of rendering workload), 
but does perform phong illumination

• Intel Core 2 Quad Q9550 achieves 1.5 FPS
• Nvidia GeForce GTX260 achieves ~60 FPS
• Speedup of ~40x despite significantly reduced 

workload of sequential system
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Price-Performance Ratio
• Intel Q9550: ~$280 as of May 2009
• Nvidia GTX260: ~$160 as of May 2009
• GPU capable of approximately 70 times the 

FPS per dollar of CPU with tested hardware
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Future Work

• Performance
– Reduce register usage
– Reduce branching
– Empty Space Skipping
– Occlusion of volumes

• Image Quality
– Illumination model
– Adaptive antialiasing or step size

• Behavior
– Robust camera functionality
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Future Work

• Applications
– Real time deformable registration
– Volumetric animation
– Real time hypertexturing of objects
– Constructive Solid Geometry for volumes
– Volume mipmapping
– Volume compression algorithms
– New methods of interacting with volumes
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Conclusion
• Successful parallelization of volume rendering
• Developed extensible and portable framework for 

interactive volume rendering on CUDA
• 60 FPS on mid-high range hardware
• 40x speedup or more over sequential
• GPU has 70x FPS per dollar of CPU
• Early ray termination big performance gain
• Linear texture filtering for great quality
• Multiple volumes and rigid registration
• Unique volume rendering applications
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