Volume Ray Casting Techniques and
Applications using General Purpose
Computations on Graphics
Processing Units

Michael Romero

M.S. Thesis Defense
Department of Computer Engineering, RIT
June 16, 2009

Thesis Goals

* Interactive volume ray casting on CUDA

» Performance and quality enhancements
— Early ray termination
— Supersampling
— Texture filtering

» Exploration of volume rendering applications
— Multiple volume rendering
— Hypertextures
— Stereoscopic anaglyphs

» Extensible and portable rendering framework

Outline

* Volume Rendering

 GPGPU Background

« CUDA Architecture

* Volume Rendering on CUDA

* Implemented Features and Analysis
* Future Work

 Conclusion

* Demonstration

What is Volume Rendering?

* Purpose of volume rendering
— Allows visualization of interior of objects

— Differs from traditional 3D computer graphics,
which only describe an objects surface

* Representation of volumes

— Volumes represented using “voxels”
— Voxels typically store density information
— Optical models assign color and opacity

* Rendering volumes
— Ray casting technique, also used in ray tracing
— Slicing technique

Volume Render: 46.7 fps

Volume Rendering Triangular Mesh

Ray Casting vs. Slicing

» Ray casting is embarrassingly parallel
* Slicing techniques may exhibit aliasing

* Ray casting has a large number of easily
iImplementable performance and quality
enhancements

» 3D Textures may be used in both ray casting
and slicing techniques

» Ray casting is ideal for a CUDA
Implementation and the goals of this thesis

Ray Casting

* Fire ray from a camera, through a viewplane
* Each ray tests intersection with bounding box
* If intersected, ray march within bounding box

- Light Source

Shadow Ray

Scene Object

Ray Marching

« Step through volume using a given step size
« Sample volume at each point

 Calculate shading if applicable

« Composite the sampled points

Outline

 GPGPU Background

« CUDA Architecture

* Volume Rendering on CUDA

* Implemented Features and Analysis
* Future Work

 Conclusion

* Demonstration

GPGPU

» General-Purpose Computing on Graphics
Processing Units

 Affordable, commodity off the shelf high
performance computing

* Massively parallel processing

» Excellent price-performance ratio

* Low peak GFLOP/s per watt

» Rapidly developing field in computing

What is CUDA?

* A toolkit for programming NVIDIA graphics
cards to perform general purpose
computations (GPGPU)

* Most prominent GPGPU platform currently
available

* Requires CUDA capable device
—8 Series or better, includes mobile platforms

» Requires CUDA specific drivers
—Download at nvidia.com/cuda

v
~
o
o
e
L
O
x

o

[
o

Why do we use CUDA?

NVIDIA GPU
w==g==|ntel CPU

Nv3s NV40
NV30

G70 3.2 GHz
3.0 GHz Harpertown

oo

Jan Jun Apr
2003 2004

Core2 Duo
o—o—06—2

Jun Mar Nov May Jun
2005 2006 2007 2008

GT200 = GeForce GTX 280
G92 = GeForce 9800 GTX
G80 = GeForce 8800 GTX

G71 = GeForce 7900 GTX NV35 = GeForce FX 5950 Ultra
G70 = GeForce 7800 GTX NV30 = GeForce FX 5800
NV40 = GeForce 6800 Ultra

Image Courtesy of NVIDIA

Outline

 CUDA Architecture

* Volume Rendering on CUDA

* Implemented Features and Analysis
* Future Work

» Conclusion

 Demonstration

How it Works

 The host farms out work to be done on the device
by calling a* :
A Is SIMT (Single Instruction Multiple

Thread), with multiple threads executing
simultaneously

 Threads are the most basic level of the
computational hierarchy

* A shared memory system, but not all threads
share the same memory space

CUDA Architecture

» Threads are grouped into ‘blocks’, which
have 16KB shared memory between threads

 There is a limit of the number of threads
(512) that can be fit into a block

» Blocks are dynamically issued to be
executed on the device

e A’ ' consists of multiple blocks, with no
limit on the number of blocks per grid

Device

Grid 1

Block
(1,0)

Block (0,0)

Thread | Thread | Thread | Thread
(0, 0) (1,0) (2,0) (3, 0)

Thread | Thread | Thread | Thread
0, 1) (1,1) 2, 1) 3, 1)

Memory System

Registers per thread
memory per thread located in main memory
memory per thread block
memory located in main memory
memory in main memory — read only
memory in main memory — read only

Host can read/write global, texture and constant
memory

« cudaMalloc(), cudaFree(), cudaMemcpy()

Grid 1

4 N\ 4
Block (0, 0) Block (0, 0)

I Shared Memom Shared Memog l

Registers Registers Registers Registers

; : ; :

Thread (0, 0) Thread (1, 0) Thread (0, 0) Thread (1, 0)
A A

Local Local
Memory Memory
/L

Global Memory

Texture Memory

Constant Memory

Outline

* Volume Rendering on CUDA

* Implemented Features and Analysis
* Future Work

 Conclusion

* Demonstration

Volume Rendering on CUDA

» Ray casting Is embarrassingly parallel,
therefore easily exploitable by CUDA

» Each thread is responsible for a ray

* VVolumes are stored in texture memory

» World structure is stored in constant memory

* Pixel Buffer Object is used so rasterized
Image Is displayed using DMA

 Any CUDA device is capable of rendering
volumes, given sufficient memory capacity

Design Considerations

 Load Balancing

* Multiprocesor Occupancy
* Register Usage

* Threads Per Block
 Memory Usage

Load Balancing

* One thread per ray, and assuming no
supersampling, one ray per pixel

* Branching occurs if bounding box is not hit

« CUDA dynamically issues blocks to available
multiprocessors

* Ideally, all threads in a block finish
simultaneously

» Threads per block behaves like a “grain size”

* Dynamically allocated line segments provide
the optimal load balancing

Static Partitioning

Block Strip Cyclic

(Nodes = 4) (Nodes = 4) (Nodes = 4)

Dynamic Partitioning

Line Segment Square Block
(Grain = 9) (Grain = 9)

Voxrender: 106.1 fps

Blue: Thread ID Red: Block ID

Multiprocessor Occupancy

* The ratio of simultaneous computations on a
multiprocessor to maximum possible

* The greater the occupancy, the larger the
number of available compute nodes
* A number of deciding factors:
—Threads per block
—Registers per thread
—Shared memory usage

* No shared memory used in implementation

Register Usage

» Register usage per thread may be set at compile time

» Excess variables are placed in local memory

* Must balance poor local memory performance against
multiprocessor occupancy for optimal performance

32 Registers Per Thread

Max Occupancy

iy Block Size

Warp Occupan

Multiprocessc

0
16 80 144 X8 272 336 400 4e4

Threads Per Block

Threads Per Block

» Should be a multiple of 32 (size of a warp)
» Essentially the “grain size” for partitioning

e Also determines distribution of resources on
a multiprocessor, affecting occupancy

* Experimentation demonstrates that 32
registers per thread and 64 or 128 threads
per block yields optimal performance.

Memory Usage

» Constant Memory
— Caching policy exploits temporal locality
— Only writable by host, outside kernel execution
— Low capacity
— World structure resides in constant memory

* Texture Memory
— Caching policy exploits spatial locality
— Only writable by host, outside kernel execution
— High capacity
— Volume data resides in texture memory

Outline

* Implemented Features and Analysis
* Future Work

» Conclusion

 Demonstration

Features and Applications

* Performance Optimizaitons
— Early ray termination
 Quality Enhancements
— Supersampling
— Texture filtering
* Applications
— Mulitple volume rendering

— Hypertextures
— Anaglyphs

Early Ray Termination

» Terminate the ray marching algorithm once a
given threshold has been reached

* Requires marching in front to back order
» Performance dependent on volume
« Capable of 2x and greater speedup

Super Sampling

* Intended to reduce aliasing (aka: “jaggies”)
along edges of sharp contrast

« Cast multiple rays per pixel and average

* Experimentation yielded underwhelming
results, at high performance cost

Texture Filtering

» Two modes for reading from a texture:
— Point Mode: sample nearest texel to coordinate

— Linear Mode: sample linear average of surrounding
texels to coordinate

 No discernible difference in render time

Hypertextures

* Invented by Ken Perlin, using Perlin noise

* A technique capable of representing objects
difficult to define by triangular meshes, such
as fire, smoke and ice

Multiple Volume Rendering

* Allows for arbitrary placement of volumes

 Allows simultaneous rendering of volumes of
varying resolution and “true” dimensions

Rigid Registration

MRI Scan

Rigid Registration

MRI and CT Scan

Anaglyphs

* Allows for visualization of stereoscopic images
using “3D glasses”

» Each thread fires a ray from two perspectives

Sequential vs. CUDA

* Primitive volume rendering system developed
for sequential execution on CPU

» Sequential system does not perform ray
marching (the majority of rendering workload),
but does perform phong illumination

 Intel Core 2 Quad Q9550 achieves 1.5 FPS

* Nvidia GeForce GTX260 achieves ~60 FPS

» Speedup of ~40x despite significantly reduced
workload of sequential system

Price-Performance Ratio

* Intel Q9550: ~$280 as of May 2009
« Nvidia GTX260: ~$160 as of May 2009

* GPU capable of approximately 70 times the
FPS per dollar of CPU with tested hardware

Outline

 Future Work
e Conclusion
* Demonstration

Future Work

* Performance
— Reduce register usage
— Reduce branching
— Empty Space Skipping
— Occlusion of volumes
* Image Quality
— lllumination model
— Adaptive antialiasing or step size

» Behavior
— Robust camera functionality

Future Work

* Applications
— Real time deformable registration
— Volumetric animation
— Real time hypertexturing of objects
— Constructive Solid Geometry for volumes
— Volume mipmapping
— Volume compression algorithms
— New methods of interacting with volumes

Outline

e Conclusion
e Demonstration

Conclusion

» Successful parallelization of volume rendering

* Developed extensible and portable framework for
interactive volume rendering on CUDA

* 60 FPS on mid-high range hardware

* 40x speedup or more over sequential
 GPU has 70x FPS per dollar of CPU
 Early ray termination big performance gain
* Linear texture filtering for great quality

* Multiple volumes and rigid registration

* Unique volume rendering applications

Outline

e Demonstration

