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WHAT IS CUDA 
 

Technology trends and advances in video games and graphics techniques have led 

to a need for extremely powerful dedicated computational hardware to perform the 

necessary calculations. Graphics hardware companies such as AMD/ATI and NVIDIA 

have developed graphics processors capable of massively parallel processing, with large 

throughput and memory bandwidth typically necessary for displaying high resolution 

graphics. However, these hardware devices have the potential to be re-purposed and used 

for other non-graphics-related work. NVIDIA provides a programming interface known 

as CUDA (Compute Unified Device Architecture) which allows direct programming of 

the NVIDIA hardware. Using NVIDIA devices to execute massively parallel algorithms 

will yield a many times speedup over sequential implementations on conventional CPUs. 

 

 
Figure 1: Comparison of Modern GPUs vs. CPUs [2] 

 

 

 

 



CUDA ARCHITECTURE: 
 

Thread Organization 

 

In the CUDA processing paradigm (as well as other paradigms similar to stream 

processing) there is a notion of a ‘kernel’. A kernel is essentially a mini-program or 

subroutine. Kernels are the parallel programs to be run on the device (the NVIDIA 

graphics card inside the host system). A number of primitive ‘threads’ will 

simultaneously execute a kernel program. Batches of these primitive threads are 

organized into ‘thread blocks’. A thread block contains a specific number of primitive 

threads, chosen based on the amount of available shared memory, as well as the memory 

access latency hiding characteristics desired. The number of threads in a thread block is 

also limited by the architecture to a total of 512 threads per block. Each thread within a 

thread block can communicate efficiently using the shared memory scoped to each thread 

block. Using this shared memory, all threads can also sync within a thread block. Every 

thread within a thread block has its own thread ID. Thread blocks are conceptually 

organized into 1D, 2D or 3D arrays of threads for convenience. 

A ‘grid’ is a collection of thread blocks of the same thread dimensionality which 

all execute the same kernel. Grids are useful for computing a large number of threads in 

parallel since thread blocks are physically limited to only 512 threads per block. However, 

thread blocks within a grid may not communicate via shared memory, and consequently 

may not synchronize with one another.  

 



 
Figure 2: Thread Hierarchy [1] 

 

 Figure 2 demonstrates the thread hierarchy described. Here, kernel 1 contains a 

3x2 grid of thread blocks. Each thread block is a 5x3 block of threads, for a total of 90 

threads in kernel 1. Kernel 2 may contain a different organization of thread blocks, which 

in turn may contain an array of threads different than the arrays in the thread blocks of 

kernel 1. 

 

Memory Hierarchy 

 

 There are several levels of memory on the GPU device, each with distinct read 

and write characteristics. Every primitive thread has access to private ‘local’ memory as 

well as registers. This ‘local’ memory is really a misnomer; the memory is private to the 

thread, but is not stored local to the thread’s registers but rather off-chip in the global 

GDDR memory available on the graphics card. Every thread in a thread block also has 

access to a unified ‘shared memory’, shared among all threads for the life of that thread 

block. Finally, all threads have read/write access to ‘global memory’, which is located 

off-chip on the main GDDR memory module which therefore has the largest capacity but 



is the most costly to interact with. There also exists a read-only ‘constant’ and ‘texture’ 

memory, in the same location as the global memory. 

 The global, constant and texture memory are optimized for different memory 

usage models. Global memory is not cached, though memory transactions may be 

‘coalesced’ to hide the high memory access latency. These coalescence rules and 

behaviors are dependent on the particular device used. The read-only constant memory 

resides in the same location as global memory, but this memory may be cached. On a 

cache hit, regardless of the number of threads reading, the access time is that of a register 

access for each address being read. The read-only texture memory also resides in the 

same location as global memory, and is also cached. Texture memory differs from 

constant memory in that its caching policy specifically exploits 2D spatial locality. This 

is due to the use of ‘textures’ in 3D graphics; the use of 2D images to ‘texture’ the 

surface of 3D polygons are frequently read and benefit from caching the texture spatially. 

 

 
Figure 3: Memory Access Hierarchy [1] 

 

Figure 3 shows the scope of each of the memory segments in the CUDA memory 

hierarchy. Registers and local memory are unique to a thread, shared memory is unique to 

a block, and global, constant, and texture memories exist across all blocks. 

 

 



Multiprocessors 

 

 CUDA capable GPUs are constructed with the “Tesla” architecture. CUDA 

applications may be run on any card which supports this architecture, but each GPU 

device may have different specifications, and therefore a slightly different set of 

supported features and a different number of available computational resources. When a 

kernel is invoked, each thread block executes on a ‘multiprocessor’. This multiprocessor 

contains the resources to support a certain number of threads. Specifically, each 

multiprocessor consists of: 

• 8 Scalar Processor cores 

• 2 special function units for transcendentals 

• 1 multithreaded instruction unit 

• On-chip shared memory 

 

One or more thread blocks are assigned to a multiprocessor during the execution 

of a kernel. The CUDA runtime handles the dynamic scheduling of thread blocks on a 

group of multiprocessors. The scheduler will only assign a thread block to a 

multiprocessor when enough resources are available to support the thread block. Each 

block is split into SIMD (Single-Instruction Multiple-Data) groups of threads called 

‘warps’. The SIMD unit creates, manages, schedules and executes 32 threads 

simultaneously to create a warp. Every warp is synchronous, and therefore care must be 

taken to ensure that certain threads within a warp do not take abnormally longer 

compared to other threads in that same warp, because the warp will only execute as fast 

as the slowest thread. There are a number of programming hints provided in the CUDA 

programming guide to help prevent warp divergence. 

 

Compute Model 

 

 Every CUDA-enabled device has a compute compatibility number. This number 

indicates a standard number of registers, memory size, etc. for all devices of that 

compatibility number. Compute compatibility numbers are backwards compatible.  

 

 Num Multiprocessors Compute Compatibility 

Tesla C870 16 1.0 

GeForce 9800GT 14 1.1 

GeForce GTX260 24 1.3 
Table 1: Brief Comparison of CUDA Capable Devices [1] 

The most recent compute model for the GTX200 has a number of significant 

improvements over previous compute models, including: 

• Double precision support 

• Higher memory bandwidth 

• Doubled the number of available registers 

 



CUDA Programming Model 

API and System Variables 

To manage the thread and memory models described above, a set of API 

commands and system variables are provided by Nvidia. These include the Runtime API, 

used for managing host/device interfacing, the thread hierarchy identification variables, 

and several miscellaneous identifiers. The highest level of control is provided by the 

function type identifiers. Three such identifiers are provided: __host__, __global__, and 

__device__. 

The __host__ identifier denotes a function to be run on the general purpose CPU, 

or host. This is the default type, and therefore is not typically used explicitly. Host 

functions can do anything a normal C++ function can do, but they also call the Runtime 

API functions. These functions are primarily concerned with memory management and 

include cudaMalloc, cudaFree, cudaMemcpy, and many deviations to work with texture 

memory and to provide tailored functionality. To use these functions, standard pointers 

are used where the pointer value is an address on the device memory rather than the host 

system memory.  

Another Runtime API function of particular importance is kernel invocation. The 

syntax KernelFunctionName <<< GridDim, ThreadBlockDim >>> (@params) is used to 

specify the dimensions of the thread block and grid of thread blocks as described above. 

The kernel function is then run on the device and any memory allocated using 

cudaMalloc can be communicated by passing the device pointer as a parameter. 

Kernel functions use the __global__ identifier. This denotes which functions may 

be called from the host on the device. The final identifier, __device__, denotes functions 

that run on the device, but may not be called from the host. The most typical use of the 

__host__ identifier is when a particular function is needed by both the host and device 

and both the __device__ and __host__ identifiers are used to instruct the compiler to 

construct both versions. 

Within global and device functions, several system variables are used to manage 

threads and provide unique identification. threadIdx is a dim3 type with the unique 

identification of a thread within a thread block. Likewise, blockIdx provides unique 

identification of a thread block within a grid. With these identifiers and the 

__syncthreads() primitive that syncs all the threads in a thread block, execution can be 

effectively managed. 

 

Shared Memory 

The final important identifier is the __shared__ designator that can be applied to 

variables declared in device functions. This denotes that the variable should be stored in 

the shared memory space on the multiprocessor, which is much faster to access than any 

of the memories located off-chip. While using shared memory is therefore often a good 

idea, there are several pitfalls which can adversely affect performance when shared 

memory is not used effectively. 

 The most direct way that shared memory affects performance is that the number 

of concurrent thread blocks is limited by the available shared memory on each 



multiprocessor. The 16 kb of shared memory is split among each thread block, so if the 

shared memory used by each thread block is 4 kb, 4 thread blocks may run at a time. If 

that increases to 8 kb, only 2 thread blocks may run. This can be a mute point if the other 

limiting factors of threads/thread block and registers/thread already limit the number of 

concurrent blocks however.  

 More obscurely, memory access patterns can have a large impact on performance. 

To ensure fast execution, the shared memory is organized into 16 memory banks that can 

be accessed in parallel. Since each concurrently executing group of threads, or warp, 

contains 32 threads, these banks are accessed in two phases, each time by a half-warp of 

16 threads. When each of these threads accesses a separate bank or all threads access the 

same element, the access is as fast as using registers, however when multiple threads 

attempt to access different values in the same bank, conflicts occur. The result of 

conflicts is that accesses must be serialized. Therefore if each thread accesses every 

fourth 32-bit value, all accesses will occur on 4 of the 16 banks, and 4 levels of 

serialization will be required, effectively decreasing performance by a factor of 4. This 

can be avoided by ensuring the step size between memory accesses by threads within a 

half-warp does not divide evenly into 16. This can be accomplished with any odd step 

size. 

 
Figure 4: Bank Conflict Examples 2-way and 8-way respectively 



Design Rule Checking 

DRC Overview 

  

In the micro electrical engineering field, layout CAD tools are used to draw the 

metal, oxide and semiconductor layers that are etched into silicon to create transistors and 

integrated circuits. Geometric shapes are created using the layout tools, with different 

layers representing different metals, oxides and semiconductor materials. Layouts take 

place on a 2D plan, which often has a grid applied. The unit grid is based on the lambda 

value of the design process being utilized. The lambda value and design process are 

based on the gate length of the transistors created using that process. The geometric 

shapes created by these layout tools must adhere to a series of strict rules to ensure both 

proper electrical characteristics of the design, as well as the feasibility of etching the 

design with a given set of equipment. Design Rule Checking, or DRC is used to check the 

layout design against these rules. 

 

Suitability of DRC for CUDA 

 

Design Rule Checking was identified as an application that could benefit by a 

CUDA implementation because of the inherent parallelism that exists with the rules to be 

checked. The most common design rules used for IC layout have been identified as: 

• Minimum Spacing 

• Minimum Width 

• Minimum Edge Length 

• Encapsulation of Layer 

 



 
 

Figure 5: DRC Violation Examples 

 

Figure 5 is a graphical depiction of the rule violations identified with certain 

geometry. The minimum spacing rule verifies that one layer at its nearest point is at least 

a minimum distance away from another particular layer. The minimum width rule 

verifies that the narrowest point of the given layer is at least a minimum width. The 

minimum edge length rule verifies that every edge of the particular geometric shape is a 

minimum length, ensuring that the design is not too ‘detailed’ for the available 

fabrication tools to accurately reproduce. The encapsulation rule verifies that a particular 

layer is encapsulated within another layer. The minimum distance and encapsulation rules 

are implemented by individually verifying a specific geometric shape of a particular layer 

with every other geometric shape of a particular layer. The minimum width and edge 

length rules are verified by independently analyzing every geometric shape for one 

particular layer. It can be observed that every rule performs a check on one or more 

layers independently, and therefore each check of each geometric shape can be performed 

in parallel 

A number of industry-standard IC layout applications exist, from companies such 

as Mentor Graphics and Cadence Design Systems. However, each of these applications 

has proprietary algorithms to perform DRC checking, and proprietary internal 

representations of their layouts. In an effort to use open software with open DRC 

algorithms for comparison and open layout representations for ease of use, the Magic 

Layout Tool was chosen. Magic was written in the 1980's at Berkeley by John Ousterhout, 

and is a commonly used layout tool in academia. 

The Magic Layout Tool represents layouts using rectangles. Every geometric 

shape is split into a series of rectangles, where each rectangle is split when the horizontal 

width changes. These rectangles are listed in a text file, where a layer name is followed 

by a series of rectangles specified by the lower left and upper right corners, where an x, y 

coordinate pairs describes a corner. Rules are also located in a text file, and were an 

inspiration for the format of rules in the CUDA DRC implementation.  



Implementation 

Data Structures and Memory Management 

 

A Magic layout file is described by a list of layers, with each layer followed by 

the rectangles that comprise the geometric shapes for that layer. Each rectangle is 

specified using an x, y pair for the lower left and upper right corner of the rectangle. A 

rectangle struct was created as follows: 

 
typedef struct{ 

  int x, y; 

} Coordinate 

 

typedef struct{ 

Coordinate ll, ur; 

int offset; 

} Rectangle; 

 

The offset integer is not used in the algorithm, and is never referenced. As 

mentioned in the CUDA Programming Model section of this document, memory access 

patterns must be taken into consideration when defining data structures. If the Rectangle 

struct contained exactly 4 integers, only 4 of the 16 memory banks in shared memory 

would be used, resulting in 4 levels of serialization when each thread accesses the same 

member value of separate contiguous rectangles. By adding an offset, the step size is 

increased to five, removing the bank conflicts under typical access paterns. 

 It was necessary to create a data structure capable of holding all of these 

rectangles, with easy access to every rectangle within a particular layer. It was also 

advantageous to load a layout dynamically, without statically defining the number of 

rectangles to a layer or the number of layers in a layout. A C STL vector was used for a 

dynamically growing array of Rectangles. Each vector represents a layer, and all of the 

Rectangles in that layer are entries in the vector. A second vector was used to contain 

each layer vector. Ultimately, the entire layout is represented in a vector of vectors of 

Rectangles. 

 
typedef vector<Rectangle> RectVect; 

 

vector<RectVect> layers; 

 

 Once this was constructed, the problem of data locality presents itself. DRC is 

inherently a problem which is concerned with local data, as rectangle-defined shapes 

must only be checked against neighboring shapes. Therefore, checking every rectangle 

against every other rectangle is exceedingly inefficient and local groupings of rectangles 

become a valuable construct. This was implemented through a partitioning mechanism 

that accepts the number of regions and builds a two dimensional vector of RectVect’s for 

each layer where the RectVect contains the rectangles in a particular spatial region. 



 Now that the design is represented in spatially local regions, it must be placed on 

the device. This proved to be a more cumbersome procedure than one would expect. 

Since STL vectors were used to ease the dynamic size handling of the design data, the 

final result was contained in a non-contiguous block of memory, which cannot be copied 

to the device using cudaMemcpy. To alleviate this problem, the data structure had to be 

flattened into a simple Rectangle array.  

 While simple to implement, this introduced the problem of how to index into the 

array such that given a layer and region, one would be able to identify both the position 

and length of the associated sub-array. The solution was to construct an index table that 

could be used to accomplish both goals. The index table was constructed by recording the 

number of rectangles in each region for each layer. An exclusive prefix sum was then 

performed on the index table so that each member contained the appropriate offset to the 

first rectangle in the given region and layer. By accessing both the required index and the 

next index, the number of rectangles could also be determined. The flattened Rectangle 

array and the index table could then be copied to the device memory and accessed by the 

execution kernels. 

 All rules are capable of being defined by a few characteristics. All rules have a 

type, such as minimum distance or minimum width. A numerical value represents the 

minimum distance or width. All rules act either on one layer or between two layers. 

Finally, all rules have a comment related to the rule in the event that the rule is violated to 

give the user of the layout tool some feedback on why the rule failed. The rule structure is 

and vector of rules are as follows: 

 
typedef struct{ 

string type; 

int value; 

int layerA; 

int layerB; 

string comment; 

} Rule; 

 

vector<RectVect> layers; 

  

 Similar to the vectors used to store a dynamic number of rectangles, a vector was 

constructed to hold a dynamic number of rules. Again, the rule list was required to be 

dynamic, since the rules file is read at load time, and may vary greatly from one design 

rule check to another. Fortunately, it was not necessary to send the vector of rules to the 

device. The vector is simply iterated through by a checkRules() function, which parses 

the rules and calls their respective kernels with the appropriate parameters. 

 



Parallel Algorithms 

  

Once the data structures had been defined and loaded into the device memory, the 

design rule checks could be performed. In all the following algorithms, each thread is 

responsible for a single rectangle at a time. This allows all threads to follow the same 

memory access patterns and execution steps, which supports the shared memory access 

patterns and warp-level SIMD execution model.  

 Several levels of parallelism are exhibited by the problem and exploited by the 

algorithm. First, task parallelism is available by way of the independent spatial regions. 

Because there is no need for synchronization or data sharing between regions, separate 

thread blocks can be assigned to each region. This results in a grid of thread blocks 

analogous to the grid of regions in the design. An added benefit of constructing separate 

thread blocks for each region is the inherent dynamic scheduling that results. Because 

different numbers of rectangles will exist in each region, thread blocks will finish 

execution at different times resulting in an unbalanced work load. However, with a larger 

number of thread blocks than can be executed concurrently, completed regions are simply 

replaced by yet to be computed regions for much of the execution time. A reasonably 

large design should have hundreds or thousands of regions, and typically only 32 thread 

blocks will be executing concurrently, resulting in effective use of this feature. 

 The second level of parallelism is data level parallelism, which is naturally 

exploited by the threads in each thread block. Each thread computes the same instructions 

on different data and requires no synchronization. DRC could be considered an 

embarrassingly parallel problem due to the lack of data dependencies anywhere in the 

program flow. This is also well suited to the CUDA SIMT model, as it makes use of the 

base execution case without concern for thread synchronization. 



Performance Analysis 

How Data was Collected 

  

The purpose of this investigation was to demonstrate the performance 

improvement possible with GPGPU computing for a common electronic design 

automation application, DRC. At the same time, it is understood that implementation is at 

a pre-prototype level and certain assumptions must be made to extract meaningful results.  

 The primary concern in this implementation is the exceedingly long time required 

to build the complex set of dynamically sized vectors representing the design. This 

process takes much longer than the actual design rule checks and would overshadow the 

differentiating performance data if included in both CPU and GPU timing statistics. 

Based on the assumption that any DRC tool would have an internal memory 

representation and such a representation would not have to be dynamically built, that 

portion of execution was ignored. The portion of execution that was included was the 

actual design rule checks and looping structures. 

 Performance data was gathered from reference designs in MAG file format. To 

vary the design size, a design duplication script was used. This allowed relatively 

consistent increases in complexity and computation without the additional variability of 

changing designs. Often the DRC checks were so fast (especially for the GPU) that the 10 

ms unit of measurement was too large, so checks were performed 100 times and the total 

time was recorded. For each design, the DRC was performed on both the CPU and GPU 

and performance results were compared. 

Results 

 

 Many variations are possible including the number of regions, size of design, and 

number of threads/thread block. To provide some direction, the first performance data to 

be gathered used a set number of 100 regions. With that constant, the size of the design 

was then changed to vary the number of rectangles in each region and the number of 

threads per thread block was varied to identify an optimal configuration. 

 

Maximum 

Rectangles/Region cpu gpu - 384 gpu - 256 gpu - 192 gpu - 128 gpu - 64 

 (Rects)  (ms)  (ms)  (ms)  (ms)  (ms)  (ms) 

6 110 1100 1110 500 370 240 

15 410 1220 1210 580 440 310 

32 940 1500 1500 720 600 500 

86 9240 2570 2100 1380 1250 1290 

293 120280 6720 6630 5580 5920 9020 

Table 2: Execution Time Results 



 
Figure 6: Execution Time Trend 

 

 From Table 2 and Figure 6, an important characteristic of GPU computing is 

demonstrated. Because of the overhead of thread creation and the large computational 

capability of the GPU, a design size must be sufficiently large to fully utilize the 

hardware and demonstrate speedup. Since each thread is responsible for a single 

rectangle, the cases with fewer than 36 rectangles per region result in many threads 

running idle and the CPU outperforming the GPU. Once 36 rectangles are used, enough 

threads are active to overcome that deficiency, but only when many thread blocks can be 

run in parallel, favoring smaller numbers of threads/thread block. However, beyond 36, 

enough threads become active to exceed CPU performance in all cases.  

 

Maximum 

Rectangles/Region gpu - 384 gpu - 256 gpu - 192 gpu - 128 gpu - 64 

  (Rects) 

     6 0.1 0.099099 0.22 0.297297 0.458333 

15 0.336066 0.338843 0.706897 0.931818 1.322581 

32 0.626667 0.626667 1.305556 1.566667 1.88 

86 3.595331 4.4 6.695652 7.392 7.162791 

293 17.89881 18.14178 21.55556 20.31757 13.33481 

Table 3: Speedup Results 

 



 
Figure 7: Speedup Trends 

 

 Beyond demonstrating the scale required to make full use of the GPU hardware 

and execution model, this set of performance data was useful in determining the optimal 

number of threads. Figure 7 shows the change in speedup as the number of rectangles 

increases and identifies 192 threads per thread block as an optimal configuration. This is 

an interesting result, as one might expect that having only a single rectangle for each 

thread would be preferable to having each thread be responsible for multiple rectangles. 

However, it appears that multiple rectangles actually provides a better load balance 

between threads and along with decreased thread management overhead causes an 

increase in performance. 

 

Regions Rectangles 

CPU Time 

(ms) 

GPU Time 

(ms) Speedup 

4 376 10150 1910 5.314136 

16 384 40840 1980 20.62626 

36 381 80560 4340 18.56221 

81 352 152070 6440 23.61335 

196 335 284950 10780 26.43321 

324 354 604050 21170 28.5333 

Table 4: Design Scaling Performance 

 



 
Figure 8: Speedup vs. Number of Regions (~350 Rectangles / Region) 

 

 Once this was determined, the number of threads per thread block could be held 

constant and the size of the design changed to demonstrate how performance scales. To 

scale the design size, the reference design was duplicated spatially and divided into 

increasing numbers of region such that approximately 350 rectangles are included in each 

region. This makes sure that the shared memory space capable of holding 384 rectangles 

has high utilization and there is sufficient work to be done by each thread. Figure 8 shows 

how the increasing number of regions will, in general, increase speedup logarithmically 

with an asymptote near 30 times speedup. There is a dip in speedup when 36 regions 

were chosen. This is because with 36 regions, 2 thread blocks completely consume the 

resources of each of the 16 microprocessors, leaving 4 regions remaining to be computed 

once the resources on the microprocessors are freed. Since the penalty of waiting for 

these free resources is significant enough, the amount of remaining work to be performed 

(only 4 remaining regions), is not large enough to provide comparably the same trend in 

speedup as the same benchmark with 16 regions or 81 regions. The highest demonstrated 

speedup was 28.53 times.  

Conclusion 
 The objective of this investigation was to investigate the Nvidia CUDA 

framework for GPU computing and demonstrate the potential for large performance gains 

using the massively parallel execution model enabled. To accomplish this, a common 

Electronic Design Automation application called Design Rule Checking (DRC), which 

verifies that a design can be fabricated with a given technology, was implemented. DRC 

proved to be well suited, exhibiting task and data level parallelism which was exploited 

via the effective use of multiple thread blocks containing multiple threads. An optimal 

configuration using 192 threads in each thread block with a separate thread block for each 

spatial region of the design was identified and a speedup of 28.53 times was obtained.



 

Future Work 
 

Testing:  

 

The DRC algorithms have been verified using a number of rules on a particular 

layout file. To create a larger layout, the initial layout was copied and pasted to replicate 

the existing design, and spread across a larger design space to create more work for the 

design rule checker. Validation of both the GPU parallel algorithms as well as the CPU 

sequential algorithms would benefit greatly from further testing using other layouts, 

against additional rules. 

 

Performance Comparison: 

 

 For the purposes of showing accurate results, essentially the same algorithm logic 

was used for both the GPU parallel algorithms and the CPU sequential algorithms. While 

this provided a good basis for producing speedup results, it would also be beneficial to 

observe a real-world performance comparison against other industry standard DRC 

applications. 

 

Algorithms: 
 

 Each thread was given an entire rectangle to check in each of the rule checking 

kernels. Some kernels, especially the corner spacing and corner overlap checks, further 

parallelism is available by dividing each rectangle into independent corners. If each 

thread were able to check a corner rather than a whole rectangle, fewer registers would be 

required and additional work could be done in parallel. Special attention would have to 

be paid to warp organization for this model however. As the instructions required for 

each corner check vary slightly, simply letting the first four threads check the four corner 

of the first rectangle would cause greatly decreased performance by splitting the warp 

into four distinct SIMD groups. 

 

Data Structure Creation: 
 

 The main limiting factor of design size and program flexibility is the data 

structure creation, especially the partitioning step. As mentioned, this takes a very long 

time for large designs, limiting the design sizes that can be checked in a timely fashion. 

More importantly, the number of regions must be varied along with the design size to 

ensure the number of rectangles in any given region does not exceed some set amount. 

There is assuredly a method for automatically handling this restriction that would be 

beneficial for future work. 



Appendices  

 

Programmer Guide 

 

The project is contained in the NVIDIA_CUDA_SDK/projects/drc directory. The 

following files make up the project: 

• Drc.cpp – Host functions and main program entry point 

• Drc.cu   – Functions that make CUDA calls to the device 

• Drc.h  – Type definitions, method signatures 

• Partition.cpp  – Functions used for partitioning of data before sending to device 

 

The project can be compiled by typing “make” into the command line in the drc 

directory. This will place the drc binary in the NVIDIA_CUDA_SDK/bin/linux/release 

directory. It is also possible to compile the project using the emu and debug flags. 

Compiling the project using emulation mode, where the device behavior is emulated 

entirely on the host is performed by typing “make emu=1”. This places the binary 

executable in the NVIDIA_CUDA_SDK/bin/linux/emurelease directory. 

A number of flags have been built into the program. Flags are located in Drc.h, and 

the program must be recompiled once the flags are changed. The following lists details 

the flags: 

• NUM_TB    – NUM_TB x NUM_TB number of thread blocks 

• NUM_THREADS  – Number of threads executing per thread block 

• MAX_RECTANGLES  – Maximum number of rectangles per thread block 

• CPU_ONLY   – Execute only on the CPU (1 for yes, 0 for no) 

• GPU_ONLY   – Execute only on the GPU (1 for yes, 0 for no) 

• LOOP_ITERATIONS  – Number of times to perform drc for timing 

 

User Guide 

 

Visit www.nvidia.com/cuda and download and install the CUDA driver and the 

CUDA toolkit for the given operating system. 

Navigate to NVIDIA_CUDA_SDK/bin/linux/release and execute the DRC program 

using the following command: 
./drc[version] <layout_file.mag> <rules_file.tech>  

 Three demos have been prepared to show functionality and speedup. A DRC 

clean rules/design combination can be viewed by executing: 
./drc1 layouts/tut11d.mag rules/rules_demo_pass.tech   

A failing rules/design combination can be viewed by executing: 
 ./drc1 layouts/tut11d.mag rules/rules_demo_fail.tech  

Finally, a representative speedup with 81 regions can be viewed by executing: 
./drc2 layouts/tut3d5.mag rules/rules2.tech 
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